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The purchase of one product affects the purchases of others in a shopping basket. Discovering and measur-

ing these effects across an exponentially large number of possible interactions among numerous products

in different categories is extremely challenging. We propose a new causal discovery approach to learn the

underlying causal structure among product purchases from observational shopping basket data, filter out

non-causal correlations, and construct a causal product network (CPN) to describe these latent interactions.

We validate this approach and demonstrate its value by utilizing a large-scale basket-shopping dataset. Our

main results are as follows. (1) We show that CPNs represent interactions among products in a shopping

basket much more accurately than other candidate network structures of hypothetical consumer behav-

ior, such as a complete network or a correlations-based network. (2) Our unrestricted CPN model, which

allows product-level relationships, more accurately fits basket-shopping data than restricted specifications

of product interactions used in the previous literature, such as category-level interactions, without requir-

ing significantly more parameters. (3) Comparing brick-and-mortar and online channels, we discover that

the brick-and-mortar channel exhibits denser causal connections among product purchases in a basket. (4)

Finally, using the constructed CPNs, we demonstrate their application in a multi-category assortment opti-

mization problem and find that our model outperforms a benchmark multinomial logit model that treats

each category independently by 20%-42% in total sales. Our results make a significant advancement towards

using large-scale transaction data for modeling shopping behavior, generating new managerial insights, and

optimizing decisions.

Key words : basket shopping, product network, assortment optimization, causal discovery, empirical

research

1. Introduction

Consider a customer purchasing multiple products across categories in a single shopping visit to a

supermarket store. The study of such basket-shopping behavior is important for retailers to address

different kinds of questions, such as: (i) utilizing the vast amount of historical basket purchase data,

can we identify how buying one product causally affects the purchases of additional products, and

(ii) using the causal interactions among product purchases, can we optimize retailing decisions, such
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as which products to include in the assortment strategy or what prices and promotion strategies to

employ to maximize the total expected profit or sales.

We illustrate these questions in Figure 1 by showing different scenarios of interactions among

four products: yogurt, fresh fruit, granola, and almond milk; the interactions are depicted as causal

product networks (CPNs) where nodes symbolize the products and directed edges denote causal

relationships between the purchases of these products. In Figure 1(𝑎), fresh fruit purchase influ-

ences yogurt and granola purchases, with granola additionally inducing almond milk purchases. In

contrast, Figure 1(𝑏) suggests yogurt as the driver that influences fresh fruit and granola purchases,

while almond milk directly impacts granola sales. Figure 1(𝑐) features a sparser configuration, high-

lighting only the direct causal relationships between yogurt and fresh fruit, as well as between

almond milk and granola. Given these differences, the assortment strategy must be tailored for each

network: offering a wide variety of fresh fruit may be crucial in network (𝑎) to initiate the purchasing

sequence, while a focus on yogurt and almond milk variety can be essential in network (𝑏) to exploit

their role as purchase drivers, and network (𝑐) suggests that jointly determining the assortments of

yogurt with fresh fruit independently of the other products and likewise for almond milk with gra-

nola could be an effective strategy. Thus, understanding the specific causal dynamics between these

products can provide significant benefits for optimizing the assortment to meet consumer buying

habits.

Figure 1 An illustration of alternative causal networks for four products from different categories

While considerable advancement has been made in consumer choice for purchases within a single

category, it is only recently that new methods are emerging to characterize basket-shopping behavior

of consumers. In particular, the Multivariate MNL (MVMNL) and the Bundle Multivariate Logit

Model (BundleMVL-K) models have been developed to accommodate a complementary effect across

categories and a substitution effect within categories in modeling multiple-purchase decisions (Jasin

et al. 2023, Tulabandhula et al. 2023). These models generalize the prior literature on Multino-

mial Logit Models (MNLs), Nested Multinomial Logit (NMNL), and Mixed MNL (MMNL) models
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that are used to formulate a single-choice problem by capturing substitution patterns within a sin-

gle category (Börsch-Supan 1990, McFadden and Train 2000). However, there hasn’t yet been an

empirical study characterizing the behavior of consumers when they make multiple purchases. As

a result, the basket-shopping models proposed in the literature typically assume specific structures

of basket-shopping behavior for tractability without the benefit of empirical evidence.

Moreover, modeling causal relationships for basket-shopping consumers is a hard problem. For

instance, for the above example with four products, there are 12 possible causal relationships and 212

different causal graphs, which will likely yield different optimal product assortments. As the size of

the product network of a retailer increases, it would be astronomically difficult to conduct controlled

experimental studies to identify which causal relationships are supported by data and evaluate their

relative strength. In this paper, we propose a novel causal structure learning technique to uncover

causal relationships among product purchases and construct directed acyclic graphs (DAGs) that

can fully reveal the dynamics among many products by utilizing the transaction data collected

by retailers. For instance, in Figure 1, basket-shopping data would be used to relate the instances

of purchasing fresh fruit, yogurt, granola, and almond milk with each other as well as with other

products and iteratively eliminate possible conditional relationships until a DAG is obtained that

is supported by data. We use the PC algorithm (Spirtes et al. 2000b), the most popular causal

discovery algorithm, which leverages probabilistic independence tests to infer these structures from

observational data.

It is important to note a caveat of our research. While we use the term causal due to the causal

discovery method that we employ, our study is not a causal study in the traditional economics sense

of the term because we do not conduct controlled field experiments to measure each relationship.

Instead, the causal discovery approach is a data-driven approach that seeks to systematically elim-

inate relationships that do not have evidence in observational data. The network estimated from

this approach will then have to be further tested by retailers and will also have to be examined

for omitted variables, which can be done through selected field experiment studies. Thus, we do

not claim that the networks discovered in our estimation are truly causal. Our goal is to validate

the applicability of this technique for analyzing retail transaction data and extracting important

insights.

With the above motivation, we study the following main research questions in this paper: (1)

How do causal product networks perform in describing the relationships among product purchases

when compared to various other network representations of consumer behavior? In other words, are

the assumptions in various theoretical models consistent with the characteristics of basket-shopping

consumer behavior discovered from the data by applying causal discovery? (2) Given the empirical

evidence for network structures, how can we construct the optimal assortment strategy based on the
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causal relationships among product purchases, and to what extent does it outperform a benchmark

within-category assortment strategy based on Multinomial Logit (MNL) models? (3) Since the

technique of causal discovery has not been applied to this problem before, how well-suited is this

technique to the challenges of estimating causal graphs for basket-shopping data?

We analyze the first research question in three steps. First, we formalize the representation of

interactions among product purchases through a causal network, where the relationships between

product purchases are captured using causal links. We learn the existence of these relationships

in a data-driven way using the PC algorithm in the context of basket shopping. Note that the

causal product networks are learned from the final basket data and they are independent of the

sequence in which the items were added to the basket. We then evaluate the goodness of fit of these

causal graphs with respect to complete networks and correlation-based networks in representing

the behavior of basket-shopping consumers. Complete networks are defined as product networks

in which all products are interconnected by undirected edges; correlation-based networks connect

statistically correlated products with undirected edges; and causal networks are characterized by

edges that signify causal links among products. We hypothesize that causal networks provide a

more accurate description of the relationships among products than complete and correlation-based

networks (Hypothesis 1).

Second, motivated by the structure of product interactions assumed in the previous literature,

including product-level and category-level interactions, we then investigate the validity of various

alternative specifications of causal networks. More specifically, we consider three alternative restric-

tions on the causal network: (1) causal effects that are from category to category, (2) causal effects

from products to categories, and (3) causal effects from categories to products. The study of these

specifications is not only useful in understanding consumer shopping behavior but also computation-

ally relevant because the number of parameters to be estimated varies across these specifications.

The causal network with product-level causal effects requires more parameters, but allows them

to be tailored to individual products, which can be beneficial by providing greater flexibility in

representing customer purchase behavior. Therefore, we hypothesize that these restrictions do not

hold and the product-level causal effects model most effectively describes the causal relationships

in basket shopping compared to the three alternative specifications (Hypothesis 2).

Third, our model can be estimated specifically for different types of retailing contexts to charac-

terize differences and similarities in consumer behavior across them. For instance, in the previous

literature, Chintala et al. (2023) empirically find that online purchases show lower shopping basket

variety compared to brick-and-mortar (B&M) purchases, but the causal relationships in consumer

purchase behavior in these two channels have not been investigated. To investigate such an appli-

cation of the model, we compare the causal relationships in consumer shopping behavior between
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B&M and online channels and hypothesize that the online channel exhibits fewer causal relation-

ships among product purchases within shopping baskets compared to the B&M channel (Hypothesis

3), which can be used to explain the lower variety in online shopping baskets.

We conduct this analysis by collaborating with Numerator, a prominent market research company

known for its first-party, consumer-sourced data. Numerator gathers purchase data for a large panel

of consumers across various B&M and online channels; transaction sources include retailer loyalty

data, mobile app purchases, email as well as paper receipts. Their extensive database comprises

approximately 8.21 million consumer shopping baskets from more than 17,000 stores and around 3.90

million products in 36 categories, encompassing major retail chains such as Walmart, Costco, and

Target, as well as small supermarkets and local grocery stores across the United States. We utilize

the rich Numerator data by subdividing it into themes, including pasta, quick service restaurant

(QSR), bakery, prepared food, and unprepared food. We extract data for these five themes, each

comprising different product categories, and conduct our analysis on each theme to thoroughly study

customers’ basket-shopping behavior for different types of products. The empirical results presented

in this paper are shown separately for the five themes, covering 250 products in 25 categories across

B&M and online channels, with the number of baskets ranging from 4,907 to 14,472 for each theme.1

Our empirical evidence reveals significantly important results and confirms all three hypothe-

ses. First, we demonstrate that causal product networks provide a more accurate representation of

product relationships in shopping baskets compared to complete and correlation-based networks.

Moreover, causal product networks require fewer parameters, thereby reducing complexity; e.g., for

the pasta theme, the complete network has 2,750 parameters to be estimated, the correlation-based

network has 693, and the causal product network has 56. Second, we find that product-level causal

effects most effectively describe the causal relationships in basket shopping, outperforming the alter-

native category-level restrictions. This result shows that consumers’ basket-shopping behavior is

driven by product-level causality, not category-level interactions as assumed in the prior literature.

For example, we find that the purchases of condiments and beverages are statistically independent,

but purchasing fruit juice, a product in the beverages category, has a causal effect on the purchase

of salad dressing, a product in the condiments category. Thus, product-level effects can provide a

more accurate description of basket-shopping consumer behavior. Moreover, we find that the num-

ber of edges in the product-level causal model is surprisingly only marginally larger than that in

the alternative restriction-based specifications. Third, our analysis reveals that the online shop-

ping channel exhibits fewer causal relationships among product purchases within shopping baskets

compared to the B&M channel. Altogether, these results demonstrate the value of causal structure

1 An exception is that the number of baskets for the Quick Service Restaurant (QSR) theme in the online channel is
smaller than 500 due to its limited online availability.
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learning to characterize basket-shopping consumer behavior and provide qualitative insights into

the relationships between product categories.

To answer the second research question based on the causal network, we propose a mixed-integer

program that uses the constructed causal product networks to optimize product assortments for bas-

ket shopping. Arguably, if causal modeling more accurately captures consumer behavior, it should

result in better assortment decisions than models that ignore causality. Thus, to examine the value

of modeling basket-shopping behavior for assortment optimization, we compare the performance of

our causal product networks with the classic MNL model; the former incorporates across-category

basket-shopping behavior, while the latter considers only within-category choice behavior. Com-

paring these two models in both B&M and online channels for one theme of product categories

(prepared foods), we find that our causal model outperforms the MNL model by approximately

20%-42% in total sales across assortment sizes. Moreover, we observe distinct assortment strategies

between causal product network models and MNL models, which reveals insights into the assortment

implications of consumer behavior.

Finally, with respect to the third research question, we develop a method to combine causal

discovery with simultaneous equations modeling in order to construct the specification of consumer

basket-shopping behavior. In the first step of this method, causal discovery is used to construct a

DAG of causal relationships across products in our dataset. A key challenge that we face in this

analysis is that the amount of basket-shopping data is too large and too sparse to allow efficient

application of the PC algorithm. We address this challenge by constructing many smaller subsamples

of the data, estimating the DAG for each sample, and statistically determining the most salient

relationships. The output of this procedure is an identification of the edges in the graph and their

orientation, but not the strength of each edge. Thus, in the second step, we convert the DAG into a

simultaneous equations model and use this model to estimate the demand rate for each product and

the coefficients along the DAG. This two-step process gives us the final demand rates for products

as a function of a given assortment of products and causal relationships. Our method can be scaled

to many different retailing settings and can be expanded to incorporate additional types of retail

data such as prices, promotions, store layout, etc. to obtain further insights.

The remainder of this paper is organized as follows: §2 summarizes the related literature; §3
explains how to construct causal product networks and quantify the strengths of these relationships

using historical basket-shopping data; §4 validates the accuracy of the proposed framework using

synthetic data; §5 develops the hypotheses regarding basket-shopping consumer purchase decisions;

§6 presents the empirical results; §7 focuses on the assortment optimization problem; and §8 con-

cludes the paper.
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2. Literature Review

Our paper is related to the existing literature on choice modeling for basket-shopping behavior,

use of graph models in retail analytics, use of causal structure learning, and shopping behavior

of customers in multi-channel retailing. In this section, we review the relevant literature on these

topics and describe the contributions of our work. Choice modeling for basket-shopping customers

broadly relies on representing the complementary and substitution effects among products during the

consumer buying process. Multinomial Logit Models (MNL), which are widely used in discrete choice

modeling, capture substitution behavior within a category for either a single utility-maximizing

choice (Börsch-Supan 1990, McFadden and Train 2000) or multiple purchase decisions (Bai et al.

2023), and can also be used to estimate substitution effects in a shopping basket (Mani et al.

2022). In the recent years, the traditional MNL framework has been extended to model multiple-

purchase decisions across categories in basket shopping. The nested-MNL model has been extended

to describe the behavior of customers who choose one product from each of two categories and to

demonstrate its performance in an assortment optimization problem (Cachon and Kök 2007). The

Multivariate Multinomial Logit (MVMNL) model and the Bundle Multinomial Logit (BundleMVL-

K) model have been developed to account for both complementary and substitution effects across

categories (Jasin et al. 2023, Tulabandhula et al. 2023). These models have made considerable

advances in developing the idea that purchasing one product can either increase or decrease the

utility of purchasing another product, which can capture complementary or substitution effects

between products. Typically, these models make further assumptions regarding the structure of the

between-product effects for tractability; for example, assuming that the effects are at the category-

level rather than the product-level or assuming symmetry can both significantly reduce the number

of parameters.

However, these assumptions have not been tested in real-life data, and the empirical analysis of

basket-shopping behavior remains scarce. One recent exception is Ruiz et al. (2020) who propose

a random utility model of sequential discrete choice, where customers make purchase decisions one

after another and the utility of subsequent purchases depends not only on the attributes of each

product but also on all of the previous purchases. This method is based on a complete product

network and requires all pairwise product relationships to be estimated, which is a challenging

problem. Our research contributes to this literature by constructing causal product networks using

basket data, which identify the existence of specific directional pairwise relationships represented as

directed acyclic graphs, and by showing that CPNs provide a significantly better fit to real data than

complete networks. Our paper also provides insights into basket-shopping behavior and a method

to estimate the parameters of choice modeling that can be utilized in optimization models.
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The methodology that we utilize in this paper falls under product networks and directed acyclic

graphs (DAGs), which have attracted growing attention in modeling retail operations settings in

the recent years. In e-commerce and information systems literature, Huang et al. (2007) represent

the purchase behavior of customers in online marketplaces as bipartite consumer-product graphs

and study the characteristics of these empirical graphs against behavioral predictions from random

graphs. Oestreicher-Singer and Sundararajan (2012) construct co-purchase networks for books sold

on Amazon.com, where vertices represent books and edges connect books purchased by the same

customer, and study the effect of the network relationships on product demand. Dhar et al. (2014)

also use the product network of books sold on Amazon.com and utilize it to predict future product

demand as a function of the historical demand of a given product and its linkages with other prod-

ucts. While these papers use graphs to model co-purchase behavior, in the operations management

literature, DAGs have been used to represent preference ordering of products in non-parametric

consumer choice models. For example, Honhon et al. (2010) study the optimization of assortment

and inventory quantities in a product category when stockout-based substitution is specified by a

family of DAGs. Jagabathula and Vulcano (2018) study the estimation of partial ordering of prefer-

ences, represented as DAGs, from historical purchasing data. Jagabathula et al. (2022) utilize this

type of non-parametric choice model for personalized promotions and combine the estimation of

DAGs from historical data with an MNL model.

Note that DAGs are used in different ways in the above literature: to represent complementary

effects between products in the first group of papers and substitution effects in the second group.

Our paper differs from this literature by relying on causal directed acyclic graphs (DAGs) in product

networks to describe the causation between product purchases in shopping baskets. In our model, we

allow DAGs to represent both complementary and substitution effects; the edges between products

in the causal product networks are estimated from data and a positive weight on an edge repre-

sents complementarity whereas a negative weight represents substitution. To discover these causal

relationships among product purchases, we introduce a technique known as causal discovery, which

can infer causal relationships from observational data (Meek 2013, Glymour et al. 2019). This tech-

nique employs algorithms to analyze patterns of conditional independence relations among variables

to infer the direction and presence of causality (Eberhardt 2017). Based on the causal discovery

approach, we propose that our causal product networks can be widely applied to solve operational

problems such as choice modeling, assortment optimization, and revenue management, and can also

be generalized to incorporate different types of variables.

More generally, the causal discovery approach has been increasingly utilized in the fields of

economics and policy-making in the recent years. Hall-Hoffarth (2022) adopts a causal discovery
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approach to uncover latent macroeconomic Dynamic Stochastic General Equilibrium (DSGE) mod-

els, which can be represented by directed acyclic graphs (DAGs). Martinoli et al. (2023) introduce

a general procedure for the calibration and validation of macroeconomic simulation models based

on the causal search approach and apply it to study the relationship between climate change and

economic growth. Eberhardt et al. (2024) propose an optimization-based method for inferring causal

structures from observational data, using it to assess the validity of instrumental variables. This

approach is demonstrated with the well-known quarter-of-birth and proximity-to-college instruments

to estimate the returns to education. Kaynar and Mitrofanov (2024) develop a causal discovery

algorithm that combines short-term experimental data with long-term observational data to iden-

tify short-term variables influenced by treatment, which in turn affect the long-term outcome. This

approach is applied to analyze the long-term effects of subsidies on healthy food products. In addi-

tion to these studies in economics, the causal discovery approach has been widely applied across a

broad range of areas, including bioinformatics (e.g., Foraita et al. 2020, Triantafillou et al. 2017),

healthcare (e.g., Tu et al. 2019, Shen et al. 2021, Hasan and Gani 2022), and environmental science

(e.g., Ebert-Uphoff and Deng 2014, Runge et al. 2019, Nowack et al. 2020). Our study introduces

this approach to the field of retail operations, and addresses challenges related to the unique aspects

of very large scale retailing data, such as sparsity and heterogeneity.

Finally, our paper is related to the existing literature on multi-channel retailing. Research in this

literature has modeled and analyzed the shopping behavior of customers across different channels,

especially the brick-and-mortar and online channels. For example, Degeratu et al. (2000) compare

the price sensitivities of customers between online and brick-and-mortar channels; Venkatesan et al.

(2007) analyze the driving factors of multichannel shopping behavior; Chu et al. (2010) investigate

brand loyalty and price sensitivities for households in the online and brick-and-mortar channels;

Gallino and Moreno (2014) demonstrate that integrating online and offline channels, specifically buy-

ing items online and picking them up in a physical store, can lower customer purchases in the online

channel while increasing offline purchases and customer traffic; Wang and Goldfarb (2017) study the

complementarity and substitution effects in product demand between brick-and-mortar and online

channels; Gallino et al. (2023) examine how in-process delays affect customer purchase behavior in

the online channel and how customer sensitivity to these delays changes throughout different stages

of a shopping trip; and Chintala et al. (2023) show that there are significant differences in shopping

basket variety, basket similarity, and other purchase patterns for both brick-and-mortar and online

channels. Since our dataset includes both brick-and-mortar and online channels, it enables us to

apply the causal discovery approach separately to each of these channels and examine differences

between the causal graphs associated with these channels. We conduct this analysis and show that

the causal graphs are consistent with the empirical findings in Chintala et al. (2023).
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Thus, our paper contributes to the literature on retail operations by developing new insights into

basket-shopping behavior that can be utilized in optimization models and can accommodate both

complementary and substitution effects. Moreover, our paper provides a comprehensive analysis

of the effectiveness of the novel technique of causal discovery in retail operations by testing it

across different product groups and shopping channels, and by evaluating its impact on optimal

assortments.

3. Causal Product Network Model and Estimation

In this section, we introduce our proposed methodology for learning the interactions among product

purchases by constructing a causal product network. Rather than assuming predefined relationships,

our approach combines causal structure learning with simultaneous equations modeling to derive

these relationships from data, allowing us to analyze the behavior of basket-shopping consumers in

a data-driven manner. We first outline the standard assumptions for causal structure learning and

explain how to construct causal product networks from historical shopping data using a well-known

causal structure learning algorithm in §3.1. This algorithm returns a DAG in which product pur-

chases are represented as nodes, and the causal relations between product purchases are represented

using directed edges. It is important to note that causal structure learning alone does not quantify

the strength of discovered edges, i.e., the magnitude of the effect on each edge. Thus, in the second

step, we convert the DAG into a simultaneous equations model (SEM) and use this model to esti-

mate the demand rate for each product and the coefficients along the DAG in §3.2. This two-step

process gives us the final demand rates for products as a function of a given assortment of products

and causal relationships.

We begin by introducing the notation we will use throughout the paper. Let 𝐽 = {1,2, . . . , 𝑚} be

the set of categories where 𝑚 is the total number of categories. Let 𝐼 𝑗 = {1,2, . . . , 𝑛 𝑗} be the set of

products in category 𝑗 ∈ 𝐽 where 𝑛 𝑗 is the total number of products in category 𝑗 . Let 𝑁 =
∑

𝑗∈𝐽 𝑛 𝑗

be the total number of products across categories. Lastly, we define 𝑥𝑖 𝑗 to represent the purchase of

product 𝑖 from category 𝑗 .

3.1. Causal Structure Learning

Causal structure learning aims to identify causal relationships among variables from observational

data without conducting experiments. Causal modeling involves associating a probability distribu-

tion 𝑃G (𝑉) with a graph G = (𝑉, 𝐸), where 𝑉 and 𝐸 represent the set of variables and the edges

included in the graph, respectively. In our setting, 𝑉 is defined as the set of all product purchases,

i.e., 𝑉 = {𝑥𝑖 𝑗 |𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽}. Let 𝑝𝑎𝑟 (𝑥𝑖 𝑗) denote the set of nodes that are the parents of product 𝑥𝑖 𝑗 ,

i.e., 𝑝𝑎𝑟𝑖 𝑗 = {𝑥𝑖′ 𝑗′ | (𝑥𝑖′ 𝑗′ → 𝑥𝑖 𝑗) ∈ 𝐸}. The underlying assumption is that the distribution 𝑃G (𝑉) is

generated by the graph structure in a way that allows factorization: 𝑃G (𝑉) =
∏

𝑥𝑖 𝑗 ∈𝑉 𝑃G (𝑥𝑖 𝑗 |𝑝𝑎𝑟𝑖 𝑗).
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The following three key assumptions enable bridging the observed data with the underlying causal

structure (Eberhardt 2017, Glymour et al. 2019).

Assumption 1 (Causal Markov Condition) Each variable 𝑥𝑖 𝑗 ∈𝑉 is conditionally independent

of its non-descendants given its parents in the causal graph G = (𝑉, 𝐸).

Assumption 2 (Faithfulness) The only independencies present in the probability distribution are

those implied by the graph structure through the causal Markov condition.

Assumption 3 (Causal Sufficiency) All common causes of any pair of variables in 𝑉 are

included within the set 𝑉 .

The first assumption, the causal Markov condition follows from how we have defined the proba-

bility distribution in terms of the causal structure (Pearl 2009) and permits us to transition from

the causal graph to the observed probabilistic independencies. In contrast, the faithfulness condi-

tion represents an additional assumption that ensures an independence in the data is due to the

underlying graph, rather than, for example, two causal pathways canceling each other out (Spirtes

et al. 2000a). Lastly, the causal sufficiency assumption ensures that all common causes of any pair of

variables in the set 𝑉 are also contained within 𝑉 , thereby excluding the existence of any unobserved

confounders. These assumptions establish a correspondence between the observed data and the

underlying graph, enabling causal structure learning algorithms to leverage probabilistic indepen-

dence relations implied by the data to learn the underlying causal relations. The following theorem

formalizes this correspondence:

Theorem 1 (Spirtes et al. 2000b). Let graph G∗ be the true data generating graph. Under the

causal Markov condition, causal faithfulness and causal sufficiency assumptions, we have:

(i) for all 𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗′ ∈ 𝑉 , 𝑥𝑖 𝑗 and 𝑥𝑖′ 𝑗′ are adjacent in true graph G∗ if and only if 𝑥𝑖 𝑗 and 𝑥𝑖′ 𝑗′ are

dependent conditional on any 𝐶 ∈𝐶(𝑖 𝑗 ) (𝑖′ 𝑗′ ) and

(ii) for all 𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗′ , 𝑥𝑖′′ 𝑗′′ ∈𝑉 such that 𝑥𝑖 𝑗 is adjacent to 𝑥𝑖′ 𝑗′ , 𝑥𝑖′ 𝑗′ is adjacent to 𝑥𝑖′′ 𝑗′′ , and 𝑥𝑖 𝑗 and

𝑥𝑖′′ 𝑗′′ are not adjacent in the true graph G∗, 𝑥𝑖 𝑗 → 𝑥𝑖′ 𝑗′ ← 𝑥𝑖′′ 𝑗′′ is in the true graph G∗ if and

only if 𝑥𝑖 𝑗 and 𝑥𝑖′′ 𝑗′′ are dependent conditional on every set 𝐶 ∈𝐶(𝑖 𝑗 ) (𝑖′′ 𝑗′′ ) such that 𝑥𝑖′ 𝑗′ ∈𝐶,
where 𝐶(𝑖 𝑗 ) (𝑖′ 𝑗′ ) = {𝐶 | 𝐶 ⊆ 𝑉 \ {𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗′}} stores all possible conditioning sets for 𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗′ ∈𝑉 .

Theorem 1 establishes that both the adjacency relations and the orientation of edges in a graph

can be inferred from conditional independence relations. The PC algorithm, which is a popular and

widely used method in causal structure learning, utilizes this correspondence between (conditional)

independence relations and the underlying graph to iteratively learn the underlying causal relations
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from observational data (Spirtes et al. 2000b). Specifically, the PC algorithm uses the principles

outlined in Theorem 1 and operates in two main phases: the first phase discovers the skeleton of the

causal structure without specifying the directions of discovered edges and the second phase handles

orienting the edges of the skeleton. The pseudo-codes for these two phases of the PC algorithm are

provided in Algorithms 1 and 2, respectively.

In Algorithm 1, we start with a complete undirected graph in which each pair 𝑥𝑖 𝑗 and 𝑥𝑖′ 𝑗′ in 𝑉 is

connected by an undirected edge. We then evaluate each pair of variables, 𝑥𝑖 𝑗 and 𝑥𝑖′ 𝑗′ , for proba-

bilistic independence by considering subsets 𝐶 in 𝐶(𝑖 𝑗 ) (𝑖′ 𝑗′ ) = {𝐶 | 𝐶 ⊆ 𝑉 \ {𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗′}}, i.e., all subsets

of 𝑉 excluding the focal pair of variables. The size of each subset, denoted by |𝐶 |, incrementally

increases throughout the testing process. If 𝑥𝑖 𝑗 and 𝑥𝑖′ 𝑗′ are found to be independent given a subset

𝐶, we remove the edge between them, following part (i) of Theorem 1. The output of Algorithm

1 is the skeleton of the causal structure, which represents the potential causal relations without

directionality among the variables and it serves as the input for the next phase of the algorithm.

Algorithm 2 focuses on orienting the edges within the graph following part (ii) of Theorem 1. We

proceed by examining conditional independence relations between variable triplets 𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗′ , 𝑥𝑖′′ 𝑗′′ ∈𝑉
such that 𝑥𝑖 𝑗 is adjacent to 𝑥𝑖′ 𝑗′ and 𝑥𝑖′ 𝑗′ is adjacent to 𝑥𝑖′′ 𝑗′′ and 𝑥𝑖 𝑗 and 𝑥𝑖′′ 𝑗′′ are not adjacent in

the skeleton returned by Algorithm 1. If 𝑥𝑖 𝑗 and 𝑥𝑖′′ 𝑗′′ are probabilistically dependent with respect

to conditioning set 𝐶 = {𝑥𝑖′ 𝑗′} then we orient 𝑥𝑖 𝑗 𝑥𝑖′ 𝑗′ 𝑥𝑖′′ 𝑗′′ as 𝑥𝑖 𝑗 → 𝑥𝑖′ 𝑗′ ← 𝑥𝑖′′ 𝑗′′ . The algorithm

then employs Meek’s rules for further edge orientation, ensuring that all the orientations are consis-

tent with Theorem 1 and the resulting graph does not include cycles (Meek 2013; see Appendix A

for illustration). The PC algorithm offers flexibility in selecting independence tests appropriate for

the specific domain and enables the choice of preferred methods for correcting multiple hypothesis

testing. These choices depend on factors such as sample size, the number of variables, whether the

variables are categorical or continuous, and the assumptions made about the parametric nature of

the causal relationships.

In general, the independence structure seen in observational data is not guaranteed to uniquely

identify the underlying causal graph. Two graphs with different structures are said to be Markov

equivalent if they have the same independence structure (Verma and Pearl 1990). In the context

of causal discovery, the Markov equivalence class of the true, data-generating graph is the limit of

what can be learned about the causal structure from the independence structure in the data. The

PC algorithm has been shown to be asymptotically correct, meaning in the large-sample limit it

discovers the true data-generating graph up to an equivalence class, given Assumptions 1-3 (Spirtes

et al. 2000b). This implies that the edge set 𝐸 returned by Algorithm 2 represents a Markov

equivalence class of graphs and it might include undirected edges. In the context of our study,

having (𝑥𝑖′ 𝑗′→ 𝑥𝑖 𝑗) ∈ 𝐸 implies purchasing product 𝑖′ from category 𝑗 ′ has a direct causal impact on
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Algorithm 1: PC algorithm - Skeleton Discovery (Spirtes et al. 2000b)

Input: 𝐼 𝑗 , 𝐽 and 𝑉 = {𝑥𝑖 𝑗 for 𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽}.
Output: G = (𝑉, 𝐸).
Initialization: G = (𝑉, 𝐸) where 𝐸 =

{
(𝑥𝑖 𝑗 𝑥𝑖′ 𝑗′), ∀𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗′ ∈𝑉 such that 𝑥𝑖 𝑗 ≠ 𝑥𝑖′ 𝑗′

}
,

NG (𝑥𝑖 𝑗) = {𝑥𝑖′ 𝑗′ ∈𝑉 \ 𝑥𝑖 𝑗}.
1. Initialize ℓ = 0.
2. for an ordered pair 𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗′ ∈𝑉 where 𝑥𝑖′ 𝑗′ ∈ NG (𝑥𝑖 𝑗) and |NG (𝑥𝑖 𝑗) \ 𝑥𝑖′ 𝑗′ | ≥ 𝑙:
3. for 𝐶 ∈𝐶(𝑖 𝑗 ) (𝑖′ 𝑗′ ) with |𝐶 | = ℓ:
4. if 𝑥𝑖 𝑗 ⊥⊥ 𝑥𝑖′ 𝑗′ | 𝐶:
5. Remove the edge (𝑥𝑖 𝑗 𝑥𝑖′ 𝑗′) from 𝐸 .
6. Update NG (𝑥𝑖 𝑗) =NG (𝑥𝑖 𝑗) \ 𝑥𝑖′ 𝑗′ and NG (𝑥𝑖′ 𝑗′) =NG (𝑥𝑖′ 𝑗′) \ 𝑥𝑖 𝑗 .
7. Break.
8. if ℓ < |𝑉 | − 2:
9. Update ℓ = ℓ + 1. Go to Step 2.
10. else ℓ = |𝑉 | − 2:
11. Break.
12. Return G = (𝑉, 𝐸).

Algorithm 2: PC algorithm - Orienting Edges (Spirtes et al. 2000b)

Input: G = (𝑉, 𝐸).
Output: G = (𝑉, 𝐸).
1. for 𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗′ , 𝑥𝑖′′ 𝑗′′ ∈𝑉 where {(𝑥𝑖 𝑗 𝑥𝑖′ 𝑗′), (𝑥𝑖′ 𝑗′ 𝑥𝑖′′ 𝑗′′)} ⊆ 𝐸 & {(𝑥𝑖 𝑗 𝑥𝑖′′ 𝑗′′)} ⊈ 𝐸 :
2. if 𝑥𝑖 𝑗 ̸⊥⊥𝑥𝑖′′ 𝑗′′ | 𝑥𝑖′ 𝑗′ :
3. Orient 𝑥𝑖 𝑗 𝑥𝑖′ 𝑗′ 𝑥𝑖′′ 𝑗′′ as 𝑥𝑖 𝑗→ 𝑥𝑖′ 𝑗′← 𝑥𝑖′′ 𝑗′′ .
4. Update 𝐸 =

(
𝐸 \ {(𝑥𝑖 𝑗 𝑥𝑖′ 𝑗′), (𝑥𝑖′ 𝑗′ 𝑥𝑖′′ 𝑗′′)}

)
∪ {(𝑥𝑖 𝑗→ 𝑥𝑖′ 𝑗′), (𝑥𝑖′ 𝑗′← 𝑥𝑖′′ 𝑗′′)}.

Meek rules (See Appendix A for illustration):
4. (R1) for 𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗′ , 𝑥𝑖′′ 𝑗′′ ∈𝑉 where 𝑥𝑖 𝑗 ∉NG (𝑥𝑖′′ 𝑗′′) and {(𝑥𝑖 𝑗→ 𝑥𝑖′ 𝑗′), (𝑥𝑖′ 𝑗′ 𝑥𝑖′′ 𝑗′′)} ⊆ 𝐸 :
5. Update 𝐸←

(
𝐸 ∪ {(𝑥𝑖′ 𝑗′→ 𝑥𝑖′′ 𝑗′′)}

)
\ {(𝑥𝑖′ 𝑗′ 𝑥𝑖′′ 𝑗′′)}.

6. (R2) for 𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗′ , 𝑥𝑖′′ 𝑗′′ ∈𝑉 where {(𝑥𝑖 𝑗→ 𝑥𝑖′ 𝑗′), (𝑥𝑖′ 𝑗′→ 𝑥𝑖′′ 𝑗′′), (𝑥𝑖 𝑗 𝑥𝑖′′ 𝑗′′)} ⊆ 𝐸 :
7. Update 𝐸←

(
𝐸 ∪ {(𝑥𝑖 𝑗→ 𝑥𝑖′′ 𝑗′′)}

)
\ {(𝑥𝑖 𝑗 𝑥𝑖′′ 𝑗′′)}.

8. (R3) for 𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗′ , 𝑥𝑖′′ 𝑗′′ , 𝑥𝑖′′′ 𝑗′′′ ∈𝑉 where 𝑥𝑖′ 𝑗′ ∉NG (𝑥𝑖′′′ 𝑗′′′) &
9. {(𝑥𝑖 𝑗 𝑥𝑖′ 𝑗′), (𝑥𝑖′ 𝑗′→ 𝑥𝑖′′ 𝑗′′), (𝑥𝑖 𝑗 𝑥𝑖′′′ 𝑗′′′), (𝑥𝑖′′′ 𝑗′′′→ 𝑥𝑖′′ 𝑗′′), (𝑥𝑖 𝑗 𝑥𝑖′′ 𝑗′′)} ⊆ 𝐸 :
10. Update 𝐸←

(
𝐸 ∪ {(𝑥𝑖 𝑗→ 𝑥𝑖′′ 𝑗′′)}

)
\ {(𝑥𝑖 𝑗 𝑥𝑖′′ 𝑗′′)}.

11. (R4) for 𝑥𝑖 𝑗 , 𝑥𝑖′ 𝑗′ , 𝑥𝑖′′ 𝑗′′ , 𝑥𝑖′′′ 𝑗′′′ ∈𝑉 where 𝑥𝑖 𝑗 ∉NG (𝑥𝑖′′ 𝑗′′) &
12. {(𝑥𝑖 𝑗→ 𝑥𝑖′ 𝑗′), (𝑥𝑖′ 𝑗′→ 𝑥𝑖′′ 𝑗′′), (𝑥𝑖 𝑗 𝑥𝑖′′′ 𝑗′′′), (𝑥𝑖′′′ 𝑗′′′ 𝑥𝑖′′ 𝑗′′), (𝑥𝑖′ 𝑗′ 𝑥𝑖′′′ 𝑗′′′)} ⊆ 𝐸 :
13. Update 𝐸←

(
𝐸 ∪ {(𝑥𝑖′′′ 𝑗′′′→ 𝑥𝑖′′ 𝑗′′)}

)
\ {(𝑥𝑖′′′ 𝑗′′′ 𝑥𝑖′′ 𝑗′′)}.

14. Return G = (𝑉, 𝐸) where 𝐸 = 𝐸 .

purchasing product 𝑖 from category 𝑗 . Whereas having (𝑥𝑖′ 𝑗′ 𝑥𝑖 𝑗) ∈ 𝐸 implies an unspecified causal

relationship between the products. In other words, (𝑥𝑖′ 𝑗′ 𝑥𝑖 𝑗) suggests that there is an edge between

𝑥𝑖′ 𝑗′ and 𝑥𝑖 𝑗 , but it could point in either direction.

Figure 2 illustrates the steps of the PC algorithm for an example. For a given true data-generating

graph over product purchases 𝑥11 and 𝑥21 in category 1, and 𝑥12 and 𝑥22 in category 2, the PC

algorithm conducts a series of conditional independence tests using the data generated accordingly

with this graph. Algorithm 1 starts with testing for marginal independencies (ℓ = 0). Since 𝑥11 and
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𝑥12 are marginally independent, denoted as 𝑥11 ⊥⊥ 𝑥12, the edge between 𝑥11 and 𝑥12 is removed.

Then, we start testing for conditional independencies. At the first order (ℓ = 1), since 𝑥11 ⊥⊥ 𝑥22 | 𝑥21
and 𝑥12 ⊥⊥ 𝑥22 | 𝑥21, the edges between 𝑥11 and 𝑥22 and 𝑥12 and 𝑥22 are removed. Since no further

independencies are found at the second order (ℓ = 2), we obtain the skeleton of the graph. Using

this skeleton, Algorithm 2 orients the edges using the dependency relations. Since 𝑥11 ⊥̸⊥ 𝑥12 | 𝑥21,
we must have 𝑥11→ 𝑥21← 𝑥12 following part (ii) of Theorem 1. Finally, we orient the remaining

edges using Meek’s rules, resulting in 𝑥21→ 𝑥22, forming the directed acyclic graph that captures

the causal relationships. In this example, we are able to identify a unique graph, indicating that

there is only one graph in the Markov equivalence class of the underlying graph. 2

Figure 2 Illustration of the PC algorithm steps for an example

3.2. Simultaneous Equations Model

While the PC algorithm discovers the existence of causal relationships among product purchases, it

doesn’t quantify the strength of their influences. To estimate these causal effects, we convert the DAG

into a SEM and use this model to estimate the demand rate for each product and the coefficients

along the DAG. Note that the previous section establishes that the distribution 𝑃G (𝑉) is generated

by the graph structure in a way that allows factorization: 𝑃G (𝑉) =
∏

𝑥𝑖 𝑗 ∈𝑉 𝑃G (𝑥𝑖 𝑗 |𝑝𝑎𝑟 (𝑥𝑖 𝑗)). In the

SEM, we build on this principle by considering only the parents of each product as the explanatory

variables in the equation corresponding to that product. When the CPN is a DAG, then the SEM can

be transformed into a triangular matrix and solved to obtain unbiased estimates of all coefficients.

However, as discussed in Section 3.1, the edge set 𝐸 may include undirected edges due to Markov

2 As previously mentioned, unique identification of the causal graphs is not always guaranteed.
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equivalence, making it challenging to identify the exact set of parents of variables. To account

for this, we define the parent set 𝑝𝑎𝑟𝑖 𝑗 for each variable 𝑥𝑖 𝑗 as 𝑝𝑎𝑟𝑖 𝑗 = {𝑥𝑖′ 𝑗′ | (𝑥𝑖′ 𝑗′ → 𝑥𝑖 𝑗) ∈ 𝐸} ∪

{𝑥𝑖′ 𝑗′ | (𝑥𝑖′ 𝑗′ 𝑥𝑖 𝑗) ∈ 𝐸}, i.e., undirected edges are included in the equations of both products. Then,

the corresponding simultaneous equations can be written as:3

𝑥𝑖 𝑗 = 𝛼𝑖 𝑗 +
∑︁

𝑥𝑖′ 𝑗′ ∈𝑝𝑎𝑟𝑖 𝑗
𝛽
𝑖 𝑗

𝑖′ 𝑗′𝑥𝑖′ 𝑗′ + 𝜖𝑖 𝑗 , ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽. (1)

In this SEM, we represent the purchase probability of each product 𝑥𝑖 𝑗 using an intercept 𝛼𝑖 𝑗

that represents the baseline purchase rate, a linear sum of the effects from parent products within

𝑝𝑎𝑟𝑖 𝑗 , and an error term 𝜖𝑖 𝑗 . The coefficient 𝛽𝑖 𝑗
𝑖′ 𝑗′ indicates the estimated strength of the causal

effect of the purchase of product 𝑥𝑖′ 𝑗′ on the purchase of product 𝑥𝑖 𝑗 ; 𝛽
𝑖 𝑗

𝑖′ 𝑗′ can take either positive

or negative values representing situations where the demand for one product may cause an increase

or a decrease in the demand for another product. This model is estimated using basket-shopping

transaction data, where each basket represents a row in the estimation dataset. We suppress the

index for baskets for ease of notation.

Let 𝜷 be the (𝑁 × 𝑁)-matrix of coefficients 𝛽𝑖 𝑗
𝑖′ 𝑗′ . Figure 3 illustrates how the graph G informs

construction of the coefficient matrix 𝜷. In this example, each non-zero element 𝛽𝑖 𝑗
𝑖′ 𝑗′ within the

(𝑁 × 𝑁) matrix corresponds to a directed edge from 𝑥𝑖′ 𝑗′ to 𝑥𝑖 𝑗 in G, representing the magnitude

of that effect. Zero entries in the matrix reflect the absence of a direct causal edge between the

respective product purchases in the graph.

Figure 3 An example of a causal graph and its corresponding coefficient matrix 𝜷

3 The coefficients of this model can be biased due to endogeneity caused by undirected edges in the CPN. We find
that the proportion of undirected edges in our CPNs is small and allows us to obtain good fit results. We also utilize
an alternative approach of forcing edges to be oriented by comparing the statistical significance of each directed edge
and selecting the direction with the higher significance. We adopt this approach in §7 of the paper for assortment
optimization.
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4. Numerical Validation with Synthetic Data

In real-life data, the counterfactual is not observed and the true causal graph is unknown. There-

fore, in this section, we present a simulation study to validate the ability of our proposed method

consisting of the PC algorithm and the corresponding SEM for recovering the true model of causal

relationships and their strengths from product purchases.

Our analysis proceeds in two steps. First, we synthetically generate basket data for a large set of

causal graphs with varying numbers of products and categories. Recall that 𝑚 represents the total

number of categories and 𝑛 𝑗 denotes the number of products in category 𝑗 , where 𝑗 ∈ {1, . . . , 𝑚}. We

randomly construct 100 causal product networks with 15 to 50 products in each graph as follows: 𝑚 is

uniformly distributed between 3 and 5, 𝑛 𝑗 is uniformly distributed between 5 and 10 for each category

𝑗 , and we vary graph densities by using edge inclusion probability that is uniformly distributed

between 0.1 and 0.5. For each given causal product network, we assume that the purchases within

a basket are driven by (𝑖) base purchase rates and (𝑖𝑖) the underlying causal product network and

the corresponding edge coefficients that represent the strength of these relations. Specifically, we

assume that the decision to purchase a product follows a Bernoulli distribution, where the purchase

probability is the sum of its base purchase rate and the effects from its purchased parent products

as shown in (1). We simulate synthetic basket-shopping data for each graph with the number of

baskets varying uniformly between 1000 and 10,000. In the second step, we utilize the simulated

data to learn the causal network using the PC algorithm and estimate parameters using the SEM,

allowing us to compare the estimated causal graph and parameters directly with the true values.

These steps are summarized in Algorithm 3.

Table 1 assesses the performance of the PC algorithm across these 100 randomly generated causal

product networks by comparing its output to the true causal graphs. In skeleton discovery, we

assess the algorithm’s ability to accurately identify the existence and non-existence of edges between

variables. In edge orientation, we evaluate how precisely the algorithm determines the directions of

the edges.

The results in Table 1 indicate that the true positive rate and true negative rate for identifying the

skeleton of causal structure among product purchases are 97.37% and 98.80%, respectively, demon-

strating the algorithm’s accuracy in discovering the skeleton. The percentage of edges that were

not discovered is 2.63%, and the percentage of non-existing edges that were incorrectly identified

is 1.20%. Turning to edge orientation, the last two columns of Table 1 show the final result after

completing this phase. We find that 82.35% of the true edges are oriented correctly, 7.38% are ori-

ented incorrectly, and the rest 7.65% are underdetermined, i.e., these edges were discovered during

the skeleton discovery phase but their orientation could not be determined in the edge orientation

phase. The decline in true positive rate from 97.37% to 82.35% after edge orientation is due to the
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Algorithm 3: Simulation of Basket Shopping

Input: Number of simulations 𝑆 = 100.
Output: G𝑠, Ḡ𝑠 for 𝑠 ∈ {1, . . . , 𝑆}, 𝑒𝑟𝑟𝛼, and 𝑒𝑟𝑟𝛽.
1. for 𝑠 ∈ {1, . . . , 𝑆} :
2. Constructing a random causal product network G𝑠
3. Sample total number of categories 𝑚𝑠 from 𝑈 (3,5).
4. Sample total number of products 𝑛 𝑗𝑠 for each category 𝑗 ∈ {1, . . . , 𝑚𝑠} from 𝑈 (5,10).
5. Define the total number of products 𝑁 as 𝑁 =

∑
𝑗∈{1,...,𝑚𝑠 } 𝑛 𝑗𝑠.

6. Sample edge inclusion probability 𝑝𝑠 from 𝑈 (0.1,0.5).
7. Construct a random DAG G𝑠 with 𝑁 nodes using the edge inclusion probability 𝑝𝑠.
8. Construct the parent set 𝑝𝑎𝑟𝑖 𝑗𝑠 for each product purchase using the graph G𝑠.
9. Generating model parameters over G𝑠:
10. for 𝑖 ∈ {1, . . . , 𝑛 𝑗𝑠}, 𝑗 ∈ {1, . . . , 𝑚𝑠}:
11. Sample 𝛼𝑖 𝑗𝑠 from 𝑈 (0,0.5).
12. Sample 𝛽𝑖 𝑗

𝑖′ 𝑗′𝑠 ∼𝑈 (0,1) for 𝑥𝑖′ 𝑗′ ∈ 𝑝𝑎𝑟𝑖 𝑗𝑠 such that
∑

𝑥𝑖′ 𝑗′ ∈𝑝𝑎𝑟𝑖 𝑗𝑠 𝛽
𝑖 𝑗

𝑖′ 𝑗′𝑠 ≤ 1−𝛼𝑖 𝑗𝑠 .
13. Set 𝛽𝑖 𝑗

𝑖′ 𝑗′𝑠 = 0 for 𝑥𝑖′ 𝑗′𝑠 ∉ 𝑝𝑎𝑟𝑖 𝑗𝑠.

14. Generating basket-shopping data:
15. Sample number of baskets 𝑇 from 𝑈 (103,104).
16. Generate basket-shopping data 𝑥𝑡

𝑖 𝑗𝑠
∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑎𝑖 𝑗𝑠 +

∑
𝑥𝑖′ 𝑗′ ∈𝑝𝑎𝑟𝑖 𝑗𝑠 𝛽

𝑖 𝑗

𝑖′ 𝑗′𝑠𝑥
𝑡
𝑖′ 𝑗′𝑠)

17. for 𝑖 ∈ {1, . . . , 𝑛 𝑗𝑠}, 𝑗 ∈ {1, . . . , 𝑚𝑠}, 𝑡 ∈ 𝑇,.
18. Graph learning and estimation of model parameters:
19. Run the PC algorithm over the generated data. Let Ḡ𝑠 denote the learned graph.
20. Estimate 𝛼𝑖 𝑗𝑠 and 𝛽

𝑖 𝑗

𝑖′ 𝑗′𝑠 for 𝑖 ∈ {1, . . . , 𝑛 𝑗𝑠}, 𝑗 ∈ {1, . . . , 𝑚𝑠} using Equation (1) over
21. the generated data and graph Ḡ𝑠. Let �̄�𝑖 𝑗𝑠 and 𝛽

𝑖 𝑗

𝑖′ 𝑗′𝑠 denote these estimates.

22. Compute estimation errors:
23. Compute 𝑒𝑟𝑟𝛼 =

{
(𝛼𝑖 𝑗𝑠 − �̄�𝑖 𝑗𝑠)/𝛼𝑖 𝑗𝑠, for 𝑖 ∈ {1, . . . , 𝑛 𝑗𝑠}, 𝑗 ∈ {1, . . . , 𝑚𝑠}, 𝑠 ∈ {1, . . . , 𝑆}

}
.

24. Compute 𝑒𝑟𝑟𝛽 =
{
(𝛽𝑖 𝑗

𝑖′ 𝑗′𝑠 − 𝛽
𝑖 𝑗

𝑖′ 𝑗′𝑠)/𝛽
𝑖 𝑗

𝑖′ 𝑗′𝑠, for 𝑖, 𝑖′ ∈ {1, . . . , 𝑛 𝑗𝑠}, 𝑗 , 𝑗 ′ ∈ {1, . . . , 𝑚𝑠}, 𝑠 ∈ {1, . . . , 𝑆}
}
.

25. Return G𝑠, Ḡ𝑠 for 𝑠 ∈ {1, . . . , 𝑆}, 𝑒𝑟𝑟𝛼, and 𝑒𝑟𝑟𝛽.

challenge in causal discovery in converting undirected edges from the skeleton into directed edges,

as not all causal relationships can be unambiguously determined from observational data due to

Markov equivalence classes as discussed in §3.1 and the limitations of data such as sample size.

Table 1 PC algorithm performance in skeleton discovery and edge orientation

True Edge Discovered Edge Skeleton Discovery
Result (%) Edge Orientation Edge Orientation

Result (%)

Exists Discovered 97.37
Oriented Correctly 82.35
Oriented Incorrectly 7.38
Underdetermined 7.65

Not Discovered 2.63

Does not exist Discovered 1.20 Oriented 1.18
Underdetermined 0.03

Not Discovered 98.80

Note: The percentages represent the proportion of edges in each case, given whether the true edge exists or does
not exist.
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After evaluating the PC algorithm’s accuracy for causal structure identification within basket-

shopping data, we shift our focus to assessing the performance of parameter estimation using the

SEM constructed from the graphs discovered by the PC algorithm. Let Ḡ𝑠 denote the graph discov-

ered in simulation scenario 𝑠 and 𝑝𝑎𝑟 𝑖 𝑗𝑠 denote the parents of product purchase 𝑥𝑖 𝑗 in graph Ḡ𝑠. We

use .̄ notation to distinguish estimates from the true values. The SEM corresponding to the graph

Ḡ𝑠 is formalized using (1) as follows:

𝑥𝑖 𝑗𝑠 = �̄�𝑖 𝑗𝑠 +
∑︁

𝑥𝑖′ 𝑗′ ∈𝑝𝑎𝑟 𝑖 𝑗𝑠

𝛽
𝑖 𝑗

𝑖′ 𝑗′𝑠𝑥𝑖′ 𝑗′𝑠 + 𝜖𝑖 𝑗𝑠, ∀𝑖 ∈ {1, . . . , 𝑛 𝑗𝑠}, 𝑗 ∈ {1, . . . , 𝑚𝑠}. (2)

Note that the structure of the discovered graph is used to directly determine the form of

the simultaneous equations. Upon estimating this model, we compare the parameters’ estimates

against the true values to determine their accuracy. For this purpose, we define 𝑒𝑟𝑟𝛼 to store

the normalized errors between the estimated and true values of base purchase rates for all prod-

ucts across the 100 scenarios corresponding to the 100 random graphs, defined as 𝑒𝑟𝑟𝛼 =
{
(𝛼𝑖 𝑗𝑠 −

�̄�𝑖 𝑗𝑠)/𝛼𝑖 𝑗𝑠, for 𝑖 ∈ {1, . . . , 𝑛 𝑗𝑠}, 𝑗 ∈ {1, . . . , 𝑚𝑠}, 𝑠 ∈ {1, . . . , 𝑆}
}
. Similarly, 𝑒𝑟𝑟𝛽, defined as 𝑒𝑟𝑟𝛽 ={

(𝛽𝑖 𝑗
𝑖′ 𝑗′𝑠 − 𝛽

𝑖 𝑗

𝑖′ 𝑗′𝑠)/𝛽
𝑖 𝑗

𝑖′ 𝑗′𝑠, for 𝑖, 𝑖′ ∈ {1, . . . , 𝑛 𝑗𝑠}, 𝑗 , 𝑗 ′ ∈ {1, . . . , 𝑚𝑠}, 𝑠 ∈ {1, . . . , 𝑆}
}
, stores the normalized

errors for causal effects of product purchases across all product pairs over the 100 scenarios.

To fully evaluate the value of causal graph learning, we introduce a benchmarking method in

which the SEM is constructed using a different criterion: including all products whose sales are

significantly correlated, regardless of the causal graph. Specifically, for each product 𝑖 from category

𝑗 , we define the set 𝑐𝑜𝑟𝑟 𝑖 𝑗𝑠 consisting of all significantly correlated purchases of products at a

significance level of 0.05 in scenario 𝑠. Then, the corresponding simultaneous equations model for

this correlation-based structure is defined as:

𝑥𝑖 𝑗𝑠 = 𝛼
𝑐𝑜𝑟𝑟
𝑖 𝑗𝑠 +

∑︁
𝑥𝑖′ 𝑗′ ∈𝑐𝑜𝑟𝑟𝑖 𝑗𝑠

𝛽
𝑖 𝑗𝑐𝑜𝑟𝑟

𝑖′ 𝑗′𝑠 𝑥𝑖′ 𝑗′𝑠 + 𝜖𝑖 𝑗𝑠, ∀𝑖 ∈ {1, . . . , 𝑛 𝑗𝑠}, 𝑗 ∈ {1, . . . , 𝑚𝑠}. (3)

Similar to 𝑒𝑟𝑟𝛼 and 𝑒𝑟𝑟𝛽, we define 𝑒𝑟𝑟𝑐𝑜𝑟𝑟𝛼 and 𝑒𝑟𝑟𝑐𝑜𝑟𝑟
𝛽

to represent the errors between the

correlation-based estimates 𝛼𝑐𝑜𝑟𝑟
𝑖 𝑗𝑠

and 𝛽
𝑖 𝑗𝑐𝑜𝑟𝑟

𝑖′ 𝑗′𝑠 and the actual values 𝛼𝑖 𝑗𝑠 and 𝛽
𝑖 𝑗

𝑖′ 𝑗′𝑠 in scenario 𝑠,

respectively. Then, by comparing the results of the model (2) with respect to the model (3), we can

evaluate the performance of causal graph learning for accurately discovering the true model.

We conduct the estimation and compute the statistics of 𝑒𝑟𝑟𝛼, 𝑒𝑟𝑟𝛽, 𝑒𝑟𝑟𝑐𝑜𝑟𝑟𝛼 , and 𝑒𝑟𝑟𝑐𝑜𝑟𝑟
𝛽

across all

the scenarios as follows: (i) when the true estimate 𝛽𝑖 𝑗
𝑖′ 𝑗′𝑠 equals zero because the true graph does not

include the corresponding edge, the measure of 𝛽𝑖 𝑗
𝑖′ 𝑗′𝑠 is undefined due to the denominator being zero;

(ii) additionally, when the estimated value 𝛽𝑖 𝑗
𝑖′ 𝑗′𝑠 equals zero because the edge does not exist in our

discovered graph while the true value is non-zero, the error term 𝑒𝑟𝑟𝛽 equals -1, which corresponds
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to the 2.63% as shown in Table 1, (iii) in all other cases, the error measures can be calculated

because both the true values and the estimated values are non-zero. In the following analysis, we

will focus on the error measures for case (iii) only, as these cases provide more meaningful statistics

for comparing approaches. The proportions of the other two cases are presented in Table 1.

Table 2 presents the statistical characteristics of the error terms across different estimators. The

mean values of 𝑒𝑟𝑟𝛼 and 𝑒𝑟𝑟𝛽 are 1.70% and −0.03%, respectively, which are closer to zero compared

to the corrected estimates 𝑒𝑟𝑟𝑐𝑜𝑟𝛼 and 𝑒𝑟𝑟𝑐𝑜𝑟
𝛽

with mean values of −88.99% and −10.75%. This

suggests that the estimates from the PC algorithm (𝑒𝑟𝑟𝛼 and 𝑒𝑟𝑟𝛽) are less biased than those from

the correlation-based structure. The root mean squared errors (RMSE) values further support this

finding, with 𝑒𝑟𝑟𝛼 and 𝑒𝑟𝑟𝛽 showing lower variability (322.60% and 13.98%) compared to 𝑒𝑟𝑟𝑐𝑜𝑟𝛼

and 𝑒𝑟𝑟𝑐𝑜𝑟
𝛽

(815.99% and 21.10%). This indicates that the estimates from the PC algorithm are

more consistent.

To assess the symmetry and tailedness of the distributions, we compute the skewness and kurtosis

of these error terms. The skewness of 𝑒𝑟𝑟𝛽 is 0.17, which is closer to zero than the skewness of 𝑒𝑟𝑟𝑐𝑜𝑟
𝛽

(−1.79), suggesting that 𝑒𝑟𝑟𝛽 is more symmetrically distributed. The kurtosis of 𝑒𝑟𝑟𝛽 (18.87) and

𝑒𝑟𝑟𝑐𝑜𝑟
𝛽

(6.71) are both higher than 3, indicating that both have heavier tails than the normal distri-

bution. In contrast, the error measures associated with the base purchase rate (𝛼), specifically 𝑒𝑟𝑟𝛼

and 𝑒𝑟𝑟𝑐𝑜𝑟𝛼 , exhibit more significant skewness and heavier tails. The skewness for 𝑒𝑟𝑟𝛼 and 𝑒𝑟𝑟𝑐𝑜𝑟𝛼 is

12.29 and −26.73, respectively, with kurtosis values of 982.36 and 763.69, indicating distributions

with substantial skewness and extreme tails.

Recognizing the influence of outliers on these statistics, we identified and removed outliers that lie

beyond three standard deviations from the mean. This process led to the detection of 6, 6, 76, and

90 outliers for 𝑒𝑟𝑟𝛼, 𝑒𝑟𝑟𝑐𝑜𝑟𝛼 , 𝑒𝑟𝑟𝛽, and 𝑒𝑟𝑟𝑐𝑜𝑟
𝛽

, respectively, which represent approximately 0.02%,

0.02%, 1.99% and 2.13% for the corresponding 𝛼 and 𝛽 terms. After removing these outliers, the

skewness of 𝑒𝑟𝑟𝛼 and 𝑒𝑟𝑟𝛽 significantly improved, moving closer to zero (3.92 and −0.08), compared

to 𝑒𝑟𝑟𝑐𝑜𝑟𝛼 and 𝑒𝑟𝑟𝑐𝑜𝑟
𝛽

(−8.43 and −0.96). Similarly, the kurtosis of 𝑒𝑟𝑟𝛼 and 𝑒𝑟𝑟𝛽 reduced to 51.10

and 2.76. These values are closer to 3 compared with 𝑒𝑟𝑟𝑐𝑜𝑟𝛼 and 𝑒𝑟𝑟𝑐𝑜𝑟
𝛽

(125.29 and 1.69), indicating

that 𝑒𝑟𝑟𝛼 and 𝑒𝑟𝑟𝛽 now exhibit distributions closer to normality than 𝑒𝑟𝑟𝑐𝑜𝑟𝛼 and 𝑒𝑟𝑟𝑐𝑜𝑟
𝛽

respectively.

Apart from the statistics of the error measures, we also visualize their distributions. Figure 4

depicts the distributions of 𝑒𝑟𝑟𝛼 and 𝑒𝑟𝑟𝑐𝑜𝑟𝑟𝛼 , and Figure 5 depicts the distributions of 𝑒𝑟𝑟𝛽 and

𝑒𝑟𝑟𝑐𝑜𝑟𝑟
𝛽

. Figure 4 shows that the values of 𝑒𝑟𝑟𝛼 are centered close to zero, while the values of 𝑒𝑟𝑟𝑐𝑜𝑟𝑟𝛼

exhibit more bias as they have heavier tails and significant skew away from zero. Similarly, Figure

5 shows that the distribution of 𝑒𝑟𝑟𝛽 closely resembles a normal distribution, whereas the values of

𝑒𝑟𝑟𝑐𝑜𝑟𝑟
𝛽

are shifted from zero.
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Table 2 Statistics of the error terms for different estimators

All Estimates Without Outliers
Measures 𝑒𝑟𝑟𝛼 𝑒𝑟𝑟𝑐𝑜𝑟𝛼 𝑒𝑟𝑟𝛽 𝑒𝑟𝑟𝑐𝑜𝑟

𝛽
𝑒𝑟𝑟𝛼 𝑒𝑟𝑟𝑐𝑜𝑟𝛼 𝑒𝑟𝑟𝛽 𝑒𝑟𝑟𝑐𝑜𝑟

𝛽

Mean (%) 1.70 -88.99 -0.03 -10.75 -3.27 -56.58 -0.29 -9.15
RMSE (%) 322.60 815.99 13.98 21.10 50.86 121.22 10.35 17.03
Skewness 12.29 -26.73 0.17 -1.79 3.92 -8.43 -0.08 -0.96
Kurtosis 982.36 763.69 18.87 6.71 51.10 125.29 2.76 1.69
N 2822 2822 3821 4225 2816 2816 3745 4135

Note: (1) RMSE refers to the root mean squared error of the error terms; (2) N refers
to the observation number; (3) Outliers are observations that lie beyond three standard
deviations from the mean of the error measure.

Figure 4 Frequency distributions of 𝑒𝑟𝑟𝛼 and 𝑒𝑟𝑟𝑐𝑜𝑟𝛼 .

Figure 5 Frequency distributions of 𝑒𝑟𝑟𝛽 and 𝑒𝑟𝑟𝑐𝑜𝑟
𝛽

.

We conclude this analysis with two findings. First, the causal graph learning method is signif-

icantly superior to the correlations-based benchmark for recovering the true graph. Second, the

PC algorithm and SEM are able to correctly identify the causal structure for 82.35% of the cases
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and accurately estimate their true parameters. Having demonstrated the PC algorithm’s ability to

accurately learn product networks and the importance of selecting the right specifications in the

SEM for parameter estimation with synthetic data, we now turn our attention to evaluating our

framework for real-world datasets and using it to generate insights.

5. Hypothesis Development

In this section, we develop three hypotheses to characterize purchase decisions of basket-shopping

consumers. The first hypothesis examines various product networks to model interactions among

products in a shopping basket, with the goal of finding the most accurate representation of these

interactions. The second hypothesis investigates the validity of various alternative specifications of

causal relationships in basket shopping, including causal effects between individual products, from

categories to products, from products to categories, and between categories. The third hypothesis

examines the differences in consumer behavior between brick-and-mortar and online channels and

focuses on characterizing the sparsity of causal connections among product purchases across these

channels.

5.1. Product Interaction Networks

There are three alternative ways in which the interactions between products in a shopping basket

can be represented. First, inspired by Tulabandhula et al. (2023), we model each product as inter-

connected with every other. We refer to this structure as the complete network. Next, we explore an

interaction model in which each product is interconnected only with products that show significant

correlation (i.e., p-value ≤ 0.05) with the same idea as the benchmarking model in §4. We refer to

this as the correlation network. The last network we consider is a causal product network obtained

through the PC algorithm.

Figure 6 Different types of product interaction networks that can arise from the same purchase data by making

different modeling assumptions

Note: The products 𝑥11, 𝑥12 and 𝑥21, 𝑥22 belong to categories 1 and 2, respectively.

Figure 6 illustrates examples of these networks showing interactions among four products across

two categories. Figure 6(a) represents the complete network; Figure 6(b) represents the correlation
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network omitting the edge between 𝑥11 and 𝑥22 due to the lack of significant correlation in the

basket data; lastly, Figure 6(c) represents the causal network, removing the edge between 𝑥12 and 𝑥22
because even though they are correlated there is no direct causal link—this relationship is mediated

by the path 𝑥12→ 𝑥21→ 𝑥22. Unlike the first two, the causal network orients the edges to indicate

the direction of relations, whereas the relationships in the other networks are symmetric.

Note that all three networks in Figure 6 can be obtained from the same given basket-shopping

dataset in real-life. For instance, using only correlations may lead researchers to incorrectly infer a

direct connection between purchases of 𝑥12 and 𝑥22, when instead, this relation might be mediated

by purchases of 𝑥21, suggesting no direct link. The proposed causal discovery methodology can

differentiate these types of indirect relationships. In other words, causal networks, unlike complete

or correlation-based networks, can remove spurious connections between product purchases and

provide directional relations. This results in a more accurate and parsimonious representation of

purchase relationships. Thus, as the first application of our methodology, we compare these networks

on our dataset and test the hypothesis that a causal network offers a more precise description of

purchase relationships compared to complete and correlation-based networks (Hypothesis 1).

Hypothesis 1 (Network Structures) A causal product network more accurately represents prod-

uct purchase relationships in basket shopping compared to complete and correlation-based networks.

To evaluate this hypothesis, we estimate all three models on our dataset as follows. The SEM for

the complete network representation is given by:

𝑥𝑖 𝑗 = 𝛼
𝑐𝑜𝑚𝑝

𝑖 𝑗
+

∑︁
𝑖′∈𝐼 𝑗′ , 𝑗′∈𝐽

𝛽
𝑖 𝑗𝑐𝑜𝑚𝑝

𝑖′ 𝑗′ 𝑥𝑖′ 𝑗′ + 𝜖𝑖 𝑗 , ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽. (4)

Let 𝑐𝑜𝑟𝑟𝑖 𝑗 store product purchases significantly correlated with the purchase of product 𝑖 from

category 𝑗 (i.e., p-value ≤ 0.05). The corresponding SEM for the correlation network representation

is defined as:

𝑥𝑖 𝑗 = 𝛼
𝑐𝑜𝑟𝑟
𝑖 𝑗 +

∑︁
𝑥𝑖′ 𝑗′ ∈𝑐𝑜𝑟𝑟𝑖 𝑗

𝛽
𝑖 𝑗𝑐𝑜𝑟𝑟

𝑖′ 𝑗′ 𝑥𝑖′ 𝑗′ + 𝜖𝑖 𝑗 , ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽. (5)

Let G = (𝑉, 𝐸) be the causal graph derived from the PC algorithm and 𝑝𝑎𝑟𝑖 𝑗 store the parents of the

purchase of product 𝑖 from category 𝑗 in graph G. The SEM for the causal network representation

is defined as:

𝑥𝑖 𝑗 = 𝛼𝑖 𝑗 +
∑︁

𝑥𝑖′ 𝑗′ ∈𝑝𝑎𝑟𝑖 𝑗
𝛽
𝑖 𝑗

𝑖′ 𝑗′𝑥𝑖′ 𝑗′ + 𝜖𝑖 𝑗 , ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽. (6)

These models differ from each other only in the number of parameters. Thus, we assess which model

provides a better fit to test Hypothesis 1.
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5.2. Specifications for Causal Representations in Basket Shopping

Building on the hypothesis that a causal network more accurately represents basket-shopping behav-

ior, we now investigate various specifications within causal structures. The prior literature suggests

that there can be different kinds of assumptions regarding consumers’ basket-shopping behavior.

For example, Song and Chintagunta (2006) and Jasin et al. (2023) assume that interactions between

two products from distinct categories depend solely on the categories to which they belong. Alter-

natively, we can generalize the interactions by considering those effects from products to categories

and from categories to products. The former suggests that the effects from any product to different

products within the same category are identical. The latter implies that the effects from all the

products within a category to another product in a different category are identical. We can apply

these restrictions to the simultaneous equations models and can empirically investigate which of

these alternative specifications most effectively represents the data.

Figure 7 Alternative causal product network specifications to Figure 6(c) with different types of imposed restrictions

Figure 7 demonstrates these specifications using the causal network shown in Figure 6(c). The

products 𝑥11, 𝑥12 and 𝑥21, 𝑥22 belong to categories 1 and 2, respectively. The parameters 𝜔𝑝 for

𝑝 = 1,2, . . . ,8 correspond to different magnitudes of causal effects. Figures 7(d)-(f) show different

conceptual representations of consumer behavior. Specifically, Figure 7(d) considers category-level

specification, ensuring that the magnitude of causal effects from 𝑥11 to 𝑥21, 𝑥11 to 𝑥22, and 𝑥12 to

𝑥21 are identical. Figure 7(e) considers product-to-category specification, ensuring the magnitude of

causal effects from 𝑥11 to 𝑥21 and 𝑥11 to 𝑥22 are identical. The last specification is depicted in Figure

7(f) where we restrict the magnitude of causal effects from 𝑥11 to 𝑥21 and 𝑥12 to 𝑥21 to be identical.

The study of these specifications is useful in understanding consumer shopping behavior because

the identification of the correct model has implications for decision-making tasks such as assortment

planning, pricing, and promotions. The four models, including Figure 6(c) and Figures 7(d)-(f),

exhibit varying levels of generalization: considering causal effects between products represents the

most general structure while considering causal effects between categories is the most restricted.

These restrictions, if proven accurate, can have critical managerial implications. Additionally, they
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are also computationally relevant because the number of parameters to be estimated decreases

with the restrictions. On the one hand, the more general models allow parameters to be tailored

to individual products, but on the other hand, having more parameters might be computationally

burdensome and might not provide the best model fit. Thus, balancing this tradeoff, we hypothesize

that models capturing product-level interactions provide a more accurate representation of shopping

data even when penalizing for model complexity (Hypothesis 2).

Hypothesis 2 (Specification Comparison) Across the four causal specifications, the product-

level causal effects model illustrated in Figure 6(c) most effectively describes the causal relationships

in basket shopping (in terms of model fit) compared to alternatives illustrated in Figures 7(d)-(f).

In other words, the restrictions imposed by the alternative models do not hold.

We now formally outline the restrictions applied to the SEM for these specifications. Let G = (𝑉, 𝐸)
be the causal graph derived by the PC algorithm. First, we introduce the category-level specification.

Among the existing causal edges in 𝐸 , let 𝐸 𝑗

𝑗′ ⊆ 𝐸 store the edges from products in category 𝑗 ′ to

products in category 𝑗 , i.e., 𝐸 𝑗

𝑗′ = {(𝑥𝑖′ 𝑗′ → 𝑥𝑖 𝑗) ∈ 𝐸, ∀𝑖′ ∈ 𝐼 𝑗′ , 𝑖 ∈ 𝐼 𝑗}. We restrict the coefficients of

all the edges in 𝐸
𝑗

𝑗′ to be identical for any 𝑗 , 𝑗 ′ ∈ 𝐽. The corresponding SEM for this structure is

defined as:

𝑥𝑖 𝑗 = 𝛼𝑖 𝑗 +
∑︁

𝑥𝑖′ 𝑗′ ∈𝑝𝑎𝑟𝑖 𝑗
𝛽
𝑖 𝑗

𝑖′ 𝑗′𝑥𝑖′ 𝑗′ + 𝜖𝑖 𝑗 , ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽 (7a)

subject to 𝛽
𝑖1 𝑗

𝑖′1 𝑗
′ = 𝛽

𝑖2 𝑗

𝑖′2 𝑗
′ , 𝑖𝑖 ∈ 𝐼 𝑗 , 𝑖′1 ∈ 𝐼 𝑗′ , 𝑗 , 𝑗 ′ ∈ 𝐽 : (𝑥𝑖′1 𝑗′→ 𝑥𝑖1 𝑗), (𝑥𝑖′2 𝑗′→ 𝑥𝑖2 𝑗) ∈ 𝐸

𝑗

𝑗′ . (7b)

Next, we introduce the product-to-category specification. Let 𝐸 𝑗

𝑖′ 𝑗′ ⊆ 𝐸 store the edges from prod-

uct 𝑖′ in category 𝑗 ′ to any product in category 𝑗 , i.e.,𝐸 𝑗

𝑖′ 𝑗′ = {(𝑥𝑖′ 𝑗′→ 𝑥𝑖 𝑗) ∈ 𝐸, ∀𝑖 ∈ 𝐼 𝑗}. We restrict

the coefficients of all the edges in 𝐸
𝑗

𝑖′ 𝑗′ to be identical for any 𝑖′ ∈ 𝐼 𝑗′ , 𝑗 , 𝑗 ′ ∈ 𝐽. The corresponding

SEM for this structure is defined as:

𝑥𝑖 𝑗 = 𝛼𝑖 𝑗 +
∑︁

𝑥𝑖′ 𝑗′ ∈𝑝𝑎𝑟𝑖 𝑗
𝛽
𝑖 𝑗

𝑖′ 𝑗′𝑥𝑖′ 𝑗′ + 𝜖𝑖 𝑗 , ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽 (8a)

subject to 𝛽
𝑖1 𝑗

𝑖′ 𝑗′ = 𝛽
𝑖2 𝑗

𝑖′ 𝑗′ 𝑖1, 𝑖2 ∈ 𝐼 𝑗 , 𝑖′ ∈ 𝐼 𝑗′ , 𝑗 , 𝑗 ′ ∈ 𝐽 : (𝑥𝑖′ 𝑗′→ 𝑥𝑖1 𝑗), (𝑥𝑖′ 𝑗′→ 𝑥𝑖2 𝑗) ∈ 𝐸
𝑗

𝑖′ 𝑗′ . (8b)

Lastly, we introduce the category-to-product specification. Let 𝐸 𝑖 𝑗

𝑗′ ⊆ 𝐸 store the edges from any

product in category 𝑗 ′ to product 𝑖 from category 𝑗 , i.e., 𝐸 𝑖 𝑗

𝑗′ = {(𝑥𝑖′ 𝑗′ → 𝑥𝑖 𝑗) ∈ 𝐸, ∀𝑖′ ∈ 𝐼 𝑗′}. We

restrict the coefficients of all the edges in 𝐸 𝑖 𝑗

𝑗′ to be identical for any 𝑖 ∈ 𝐼 𝑗 , 𝑗 , 𝑗 ′ ∈ 𝐽. The corresponding

SEM for this structure is defined as:
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𝑥𝑖 𝑗 = 𝛼𝑖 𝑗 +
∑︁

𝑥𝑖′ 𝑗′ ∈𝑝𝑎𝑟𝑖 𝑗
𝛽
𝑖 𝑗

𝑖′ 𝑗′𝑥𝑖′ 𝑗′ + 𝜖𝑖 𝑗 , ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽 (9a)

subject to 𝛽
𝑖 𝑗

𝑖′1 𝑗
′ = 𝛽

𝑖 𝑗

𝑖′2 𝑗
′ 𝑖 ∈ 𝐼 𝑗 , 𝑖′1, 𝑖′2 ∈ 𝐼 𝑗′ , 𝑗 , 𝑗 ′ ∈ 𝐽 : (𝑥𝑖′1 𝑗′→ 𝑥𝑖 𝑗), (𝑥𝑖′2 𝑗′→ 𝑥𝑖 𝑗) ∈ 𝐸 𝑖 𝑗

𝑗′ . (9b)

These SEMs correspond to different restrictions on the causal effects in Figure 6(c) as follows:

Figure 7(d) visualizes the specification in Equation (7) where the causal effects between categories

are identical, i.e., 𝛽2211 = 𝛽
21
12 = 𝜔1; Figure 7(e) corresponds to Equation (8) where the causal effects

from any product to a category are identical, i.e., 𝛽2111 = 𝛽
22
11 =𝜔3; Figure 7(f) corresponds to Equation

(9) where the causal effects from any category to a product are identical, i.e., 𝛽2111 = 𝛽
21
12 =𝜔6. Thus,

the three specifications are applied as restrictions to the product-level model presented in Equation

(6). This enables us to test Hypothesis 2 using a likelihood ratio test or AIC criterion.

5.3. Sparsity of Causal Product Networks Across Channels

The power of our causal network learning approach for archival data is that it can be not only

used to construct evidence regarding different model specifications but also applied separately to

different retailing contexts to analyze differences in basket-shopping behavior of customers. We now

turn our attention to investigating differences in these networks across brick-and-mortar and online

channels. Indeed, the prior literature has examined assortment optimization problems across these

two channels. For example, Lo and Topaloglu (2022) examines an assortment problem for a physical

store aimed at maximizing the total expected revenue of an omnichannel retailer. Gopalakrishnan

et al. (2023) compare the impacts of assortment width, defined as the number of unique categories

in which a retailer offers products, and assortment depth, defined as the average number of products

offered within each category, on order delivery timeliness. Sapra and Kumar (2023) examine the

joint assortment optimization strategy for omnichannel retailers, taking into account three classes

of customers who use only the brick-and-mortar channel, only the online channel, or both channels.

The models in the above literature are based on differences in both the cost economics and

consumer behavior across the two channels. With regard to empirical evidence for the latter, Chintala

et al. (2023) show that there are systematic differences between online and offline grocery shopping.

Specifically, online purchases have significantly lower shopping basket variety than brick-and-mortar.

However, they do not study causal relationships in consumer purchase behavior and highlight the

need for considering causal relationships. Building on this, we hypothesize that the online channel

exhibits fewer causal relationships among product purchases within shopping baskets compared to

the brick-and-mortar channel (Hypothesis 3). We believe that this difference in sparsity can provide

insights for omnichannel assortment optimization by revealing how consumer behavior varies across

online and offline environments.
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Hypothesis 3 (Sparsity) Compared to the brick-and-mortar channel, the online channel exhibits

fewer causal relationships among product purchases within shopping baskets.

Our method to test Hypothesis 3 differs slightly from the previous hypotheses. We first construct

the causal graphs separately for online and brick-and-mortar baskets; then instead of estimating

the SEM model, we compare the resulting graphs with respect to the distribution of edges between

pairs of nodes.

6. Empirical Evidence

In this section, we introduce our dataset, describe the sample construction process, and provide

statistical summaries of the samples in §6.1. We then empirically test the proposed hypotheses and

present the results of our analysis in §6.2.

6.1. Data

We collaborate with Numerator, a prominent market research company known for its first-party,

consumer-sourced data. Numerator gathers purchase data from both brick-and-mortar and online

channels for a large panel of consumers through multiple sources: retailer loyalty data, mobile app

purchases, email receipts, as well as uploaded paper receipts. Their extensive database comprises

customer purchase records from more than 17,000 stores, encompassing major retail chains such

as Walmart, Costco, and Target, as well as small supermarkets and local grocery stores across the

United States. We use their dataset for the year 2021.

The first question we face is how to utilize all available data to test our hypotheses. Learning

causal graphs is known to be NP-hard (Chickering et al. 2004). A key challenge that we face

in this analysis is that the amount of basket-shopping data is too large and too sparse to allow

efficient application of the PC algorithm. To address this problem, we construct many smaller

subsamples of the data, estimate the DAG for each sample, and statistically determine the most

salient relationships as described below. Another question is how to maintain consistency with the

causal sufficiency assumption (Assumption 3). Theoretically, all the product information in the

real world should be included in the estimation model, but including millions of products increases

the computational cost exponentially. To address this issue, we select five different themes for our

analysis: each theme is a collection of multiple representative departments and each department

includes several products. For each theme, we consider the most frequently purchased products

in each selected department to represent shopping baskets as these products are representative of

shopping baskets. Further, to include information about other products within and outside these

departments in the product networks, we create aggregated control variables for the total amount

of purchases of other products within each selected department and of products outside the selected
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departments. These control variables help account for information about other product purchases

in shopping baskets, thereby supporting the causal sufficiency assumption in our empirical study.

This design of our study provides us with sufficient information to construct and analyze product

networks for the five themes and demonstrate the usefulness of this approach.

Specifically, we focus on the following five themes: pasta, quick service restaurant (QSR), bakery,

prepared food, and unprepared food, labeled sequentially as Themes 1 through 5. We chose these

themes based on two criteria: (1) items within each theme are available in both brick and mortar

and online shopping channels, and (2) the themes are distinct enough to test the hypotheses across

a range of scenarios. Theme 1 comprises five departments: pasta & noodle, meat, produce, dairy,

and condiments. Theme 2 includes ten departments: QSR beverages, QSR breakfast, QSR sand-

wiches & wraps, QSR sauces & condiments, QSR Mexican, QSR snack & Sides, QSR desserts, QSR

entrees, QSR Italian, and QSR salads. Theme 3 comprises five departments: bakery sweet goods,

in-store bakery, packaged bakery, baking & cooking and dairy. Theme 4 includes five departments:

frozen foods, canned, deli & prepared foods, beverages, and condiments. Theme 5 comprises five

departments: produce, shelf stable meals, meat, herbs & spices, and condiments. Note that product

category and department are used synonymously in our data set. The lists of the most frequently

purchased product sets for the five themes across both brick-and-mortar and online channels, in the

brick-and-mortar channel only, and in the online channel only are shown in Appendix B.

To test Hypotheses 1 and 2, we extract and analyze basket data for each theme separately,

including purchases from both brick-and-mortar and online channels, as follows. For each theme, we

identify the most frequently purchased products within each department in 2021 combined across

both channels and choose a total of 50 products. In Themes 1, 3, 4, and 5, which consist of five

departments each, we select the top 10 products from each department. In Theme 2, which includes

ten departments, we select the top 5 products from each department. After establishing the product

set for each theme using the entire dataset, we retrieve all the shopping basket data, including

both online and brick-and-mortar channels, for 500 randomly chosen customers who had purchased

products from at least three departments within the theme in a single basket. We refer to this

collection of datasets as Data I, which comprises five datasets, each corresponding to a different

theme.

To test Hypothesis 3, since the most frequently purchased products differ between the two chan-

nels, we consider two product sets for each channel: the most frequently purchased products in

brick-and-mortar stores and the most frequently purchased products online. We refer to these as

the top brick-and-mortar products and top online products, respectively. For each product set, we

retrieve baskets for each theme, separating brick-and-mortar and online purchases, termed brick-

and-mortar baskets and online baskets. Thus, we create different datasets for four scenarios for
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each theme: (1) baskets constructed from top brick-and-mortar product sets using brick-and-mortar

purchases, (2) baskets constructed from top brick-and-mortar product sets using online purchases,

(3) baskets constructed from top online product sets using online purchases, and (4) baskets con-

structed from top online product sets using brick-and-mortar purchases. We refer to this collection

of datasets as Data II, which comprises twenty datasets (= 4 scenarios × 5 themes). By considering

the most popular products from both brick-and-mortar stores and online platforms and analyzing

purchases made through both these channels, we aim to show that the differences between brick-

and-mortar purchases and online purchases are consistent across the datasets regardless of the type

of products being considered.

Tables 3(a) and 3(b) present the statistical summaries for the total number of products purchased

per basket for Data I and Data II, respectively. As shown in Table 3(a), the median number of

purchased items is the same across the five themes, while the mean and the maximum quantity

varies, ranging from 29 to 236 items. In Table 3(b), the median quantity of purchased items in B&M

baskets remains at 2, whereas the median quantity in online baskets is higher. On average, online

baskets also contain more items compared to B&M baskets. Additionally, the number of baskets for

each theme varies between 5,000 and 15,000 across Data I and Data II, with the exception of online

Theme 2 (Quick service restaurants theme) sample. Note that the sample size for Theme 2 in the

online channel is significantly smaller, with only 189 baskets for the top brick-and-mortar channel

products and 372 baskets for the top online channel products. We believe this is due to the nature

of QSRs, which make it attractive for customers to make purchases in person rather than waiting

for online orders and delivery.

6.2. Testing Hypotheses 1 and 2

For testing Hypothesis 1, we need to generate the causal product network, the complete graph,

and the correlation-based graph for each theme. Using Data I, we first construct causal product

networks for each theme using the PC algorithm as detailed in Algorithms 1 and 2, and using a

significance level of 0.05 for partial correlations to test for conditional independence. To improve

the reliability of the learned causal graphs, we resample the data with replacement and construct

the final graph based on edge frequencies derived from these samples as proposed in the literature

(Friedman et al. 1999, Imoto et al. 2002, Mooij et al. 2020). For each theme, we create 50 sub-

samples, each consisting of all the orders from 100 randomly selected customers, and apply the PC

algorithm to discover a causal graph for each sample.4 The final causal graph is constructed by

4 We start with our customer pool of 500 randomly selected customers. However, constructing causal graphs for all
their baskets was computationally intensive, taking several hours, and had to be repeated for 5 themes, each 50 times.
To decrease runtime, we switched to subsampling and focused on orders from 100 randomly selected customers from
the pool.
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Table 3 Summary statistics of shopping baskets in Data I and Data II

(a) Data I, used for testing Hypotheses 1 and 2

Total Quantity of Items in Each Basket
Min 25% 50% 75% Max Mean SD N

Theme 1 (Pasta) 1 1 2 4 29 3.02 2.96 14,689
Theme 2 (QSR) 1 1 2 3 105 2.74 2.84 8,858
Theme 3 (Bakery) 1 1 2 3 28 2.51 2.16 7,332
Theme 4 (Prepared Food) 1 1 2 4 61 2.78 2.70 8,345
Theme 5 (Unprepared Food) 1 1 2 4 236 3.17 4.34 13,586

(b) Data II, used for testing Hypothesis 3

Top Brick-and-Mortar Products
Brick-and-Mortar Channel Online Channel

Min 25% 50% 75% Max Mean SD N Min 25% 50% 75% Max Mean SD N
Theme 1 1 1 2 4 29 2.92 2.61 14,472 1 2 4 6 27 4.80 3.67 6,664
Theme 2 1 1 2 3 47 2.75 2.57 9,247 1 1 2 3 48 3.78 5.45 189
Theme 3 1 1 2 3 41 2.53 2.12 7,252 1 2 3 4 25 3.39 2.39 6,125
Theme 4 1 1 2 3 58 2.67 2.75 6,684 1 1 3 4 60 3.50 3.30 5,563
Theme 5 1 1 2 4 170 3.16 3.77 12,901 1 2 4 6 46 4.81 4.07 5,914

Top Online Products
Brick-and-Mortar Channel Online Channel

Min 25% 50% 75% Max Mean SD N Min 25% 50% 75% Max Mean SD N
Theme 1 1 1 2 4 258 2.89 4.10 13,023 1 2 5 8 62 5.78 4.54 6,613
Theme 2 1 1 2 3 44 2.52 2.29 4,907 1 1 2 3 50 2.90 3.98 372
Theme 3 1 1 2 3 72 2.73 2.53 9,039 1 2 3 5 24 3.69 2.66 6,502
Theme 4 1 1 2 4 39 2.79 2.77 5,871 1 2 3 5 53 4.02 3.64 6,240
Theme 5 1 1 2 4 165 2.93 3.09 13,056 1 2 4 7 35 5.39 4.42 6,340

Note: (1) Themes 1-5 correspond to Pasta, Quick Service Restaurant (QSR), Bakery, Prepared Food Items, and Unprepared
Food Items, respectively, where each theme consists of several product categories; (2) N refers to the total number of baskets;
(3) SD refers to the standard deviation of product quantity in shopping baskets; (4) The size of product sets for all the themes
is 50; (5) Quantity of items refers to the total number of products included within our product set.

including edges that appear in more than 30% of the networks. Both the implementation of the PC

algorithm and the testing for independence were conducted using the pcalg package (Markus Kalisch

et al. 2012). We then generate the complete product network for each theme in Data I by simply

connecting all products by undirected edges. In the correlation-based product network, we determine

edges between nodes through pairwise Pearson correlation tests at the 0.05 significance level. Having

thus obtained all three graphs, we build simultaneous equations models for the complete product

network, the correlation-based product network, and the causal product network.

To test Hypothesis 2, we begin our analysis with the final causal graph obtained above. To this

graph, we impose the category-to-category, product-to-category, and category-to-product specifica-

tions in the corresponding simultaneous equations models as discussed in §5.2.

Table 4 presents the model fit results with labels (a)-(f) denoting the six configurations in

Hypotheses 1 and 2, as depicted in Figures 6 and 7. The top half of the table shows comparative

analysis using Akaike Information Criterion (AIC) scores, which balances the number of parameters
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and model fit, and the bottom half provides insights into the number of parameters in each model.

Note that each estimate is based on an SEM consisting of 50 equations for 50 products. The number

of independent variables varies across the specifications and is also different in Theme 2 since it

consists of 10 categories.

Comparing the results for (a), (b), and (c) across all themes in Table 4, we find that the causal

product network consistently shows the lowest AIC scores. This indicates that the causal networks

provide a more accurate representation of product relationships in shopping baskets compared to

complete and correlation-based networks, confirming Hypothesis 1. Additionally, comparing the AIC

score of (c) with the three alternative causal specifications (d), (e), and (f), we find that the product-

level causal model consistently shows the best scores. This shows that it most effectively captures

the causal relationships in basket shopping and the restrictions imposed by the other models do not

hold, substantiating Hypothesis 2. This result provides us with an important finding that consumers’

basket-shopping behavior is driven by product-level causality, not category-level interactions, which

is relevant for the design of choice models for basket-shopping behavior. Moreover, note that there

is a very highly significant difference in the AIC scores of model (c) versus all the other models,

demonstrating the quality of the fit.

Turning to the bottom half of the table, causal product networks require fewer parameters, thereby

reducing estimation complexity as well as the potential for multicollinearity; e.g., for the pasta

theme, the complete network has 2,750 parameters to be estimated, the correlation-based network

has 693, and the causal product network has 56. Further, we find that the number of edges in

the product-level causal model is surprisingly only marginally larger than that in the alternative

restriction-based specifications, e.g., for the pasta theme, these numbers are 56 parameters for

the causal product network, 14 for the category-level specification, 42 for the product-to-category

specification, and 39 for the category-to-product specification. We make two inferences from these

results: (i) the number of causal relationships in basket-shopping behavior is not too large, making it

computationally tractable and managerially feasible to analyze and manage these relationships, and

(ii) the correct specification of these relationships is critical for model fit, which should materially

affect decision-making tasks based on choice modeling.

6.3. Testing Hypothesis 3

To test Hypothesis 3, we create causal product networks separately for each of the 20 datasets in

Dataset II representing both brick-and-mortar and online channels. Following the same approach

as described in the previous subsection, for each theme and product set, we extract 50 subsamples

from the corresponding dataset, each consisting of orders from 100 randomly selected customers.

We then use the PC algorithm to discover the causal graph for each sample.
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Table 4 Model fit results for the six network structures in Hypotheses 1 and 2

AIC Scores
Network Structure (a) (b) (c) (d) (e) (f)
Theme 1 (Pasta) 669,880 668,745 315,548 699,523 698,639 690,543
Theme 2 (QSR) 449,416 447,761 364,352 480,381 475,279 470,493
Theme 3 (Bakery) 178,631 177,365 147,093 197,965 196,526 189,143
Theme 4 (Prepared Food) 403,995 409,765 272,623 445,457 444,797 443,339
Theme 5 (Unprepared Food) 1,054,567 1,052,783 531,967 1,135,675 1,132,544 1,117,816

Number of Parameters
Network Structure (a) (b) (c) (d) (e) (f)
Theme 1 (Pasta) 2,750 693 56 14 42 39
Theme 2 (QSR) 3,000 842 48 22 42 39
Theme 3 (Bakery) 2,750 496 53 14 42 42
Theme 4 (Prepared Food) 2,750 520 63 15 52 49
Theme 5 (Unprepared Food) 2,750 493 36 13 29 32

Note: (1) The size of product sets for all the themes is 50; (2) The numbers of baskets are 14689, 8858, 7332,
8345, and 13586 for themes 1-5, respectively.

To compare the sparsity of the brick-and-mortar and online causal product networks statistically,

we used a paired t-test. Each pair in the test represents the frequency of occurrence of a specific

directed edge in the brick-and-mortar causal network and the frequency of the same directed edge

in the online causal network across the 50 samples. We exclude edges that were never found to

be present in either the brick-and-mortar or online settings in any of the samples. This exclusion

ensures that the analysis focuses only on relevant edges that were observed at least once.

Table 5 Average frequency of occurrence of directed edges across 50 simulations: Test for Hypothesis 3

Top B&M Products Top Online Products

B&M Online Difference Num.
of Pairs B&M Online Difference Num.

of Pairs

Theme 1 (Pasta) 4.40 3.71 0.87***
(8.20) 1322 5.75 5.34 0.41**

(7.70) 1379

Theme 2 (QSR) 5.80 0.80 6.99***
(14.91) 618 10.87 2.93 7.94***

(15.63) 432

Theme 3 (Bakery) 3.16 2.80 0.69***
(7.03) 982 4.67 4.71 -0.05

(6.65) 1201

Theme 4 (Prepared Food) 3.52 2.96 0.46**
(8.65) 1072 5.04 4.73 0.31*

(8.04) 1193

Theme 5 (Unprepared Food) 3.90 3.08 0.90***
(6.95) 1308 4.95 4.46 0.48***

(6.99) 1392

Note: (1) *p<0.1; **p<0.05; ***p<0.01; (2) The values for B&M, Online, and Difference correspond to the average occur-
rence frequencies of a directed edge across 50 simulations for B&M, Online, and the B&M-Online comparison, respectively;
(3) The number of observations represents the number of directed edges that appear at least once in B&M or Online causal
structures.

The results of the paired t-test are presented in Table 5. We show the average frequency of directed

edge occurrences across 50 simulations for both brick-and-mortar and online channels, along with the

differences between these frequencies and the total number of edge pairs (i.e., the number of directed



32

edges that appear at least once in either the brick-and-mortar or online causal structures across 50

subsamples). Our results show that the online channel has a smaller number of edges than the brick-

and-mortar channel in 9/10 cases; six of these are statistically significant at a 0.01 significance level,

two at 0.05, and one at 0.1. For Theme 3, there is a significant difference when top brick-and-mortar

products are considered, but not when the top online products are considered. Overall, these results

support our hypothesis that online causal product networks are sparser than their brick-and-mortar

counterparts. This implies that purchases in a basket in the online channel are more likely to be

independent of each other, with limited complementary and substitution effects, than those in the

brick-and-mortar channel. Thus, assortments and inventories for online channels can be planned

independently for products more easily than for the brick-and-mortar channel. Moreover, this also

suggests that there is a greater need for recommendation systems and cross-promotions to increase

basket size in online channel than in the brick-and-mortar channel.

Robustness. We conduct robustness tests for Hypotheses 1 and 2 by separately analyzing the

B&M and online channels for all five themes to verify the consistency of results for these hypotheses

across both channels. Our results are presented in Appendix C and support both hypotheses, except

for the online channel in Theme 2, where insufficient data was available.

7. Assortment Optimization

In this section, we assess the value of modeling basket-shopping behavior for assortment optimiza-

tion. For this, we construct and compare optimal assortments across two scenarios: when demand

is given by our causal product networks method, and when it is assumed to follow a traditional

multinomial logit model that considers choice within categories but treats each category as inde-

pendent. We train and evaluate both choice models on our Numerator dataset. Arguably, if causal

modeling more accurately captures consumer behavior, it should result in better assortment deci-

sions than a model that only considers choice behavior within a category and ignores downstream

effects across categories. Thus, we seek to estimate the difference in performance between these two

solution approaches to quantify the value of modeling basket-shopping behavior.

We conduct this study using Data II for the prepared food theme (Theme 4; see § 6.1 for details)

considering the B&M and online channels separately. For the B&M channel, the product set consists

of the top B&M products, while for the online channel, the product set comprises the top online

products. Thus, our approach consists of the following steps. First, using the method presented

in §6, we construct causal product networks using the PC algorithm across 50 subsamples and

include a causal edge if it appears in more than 30% of these subsamples. To ensure that the final

causal product network is free of cycles, we prioritize the inclusion of causal edges based on their

frequency of appearance across the subsamples, starting with the most frequent. Second, using
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simultaneous equations modeling, we then estimate the base purchase probability for each product

and the strengths of causal effects within the constructed product network. After this step, we have

a complete specification of the CPN-based purchase model, which serves as input for assortment

optimization. Third, we propose a mixed-integer program to optimize product assortments for basket

shopping considering the discovered causal product networks. Finally, using the same dataset, we

estimate a traditional MNL model for each product category, use it to optimize the assortment

under MNL and compare the optimization results under MNL with those under causal graphs.

Our mixed-integer programming model aims to select the optimal product assortment that max-

imizes total demand by considering the individual demand for each product and the effect of each

product’s purchase on others within the discovered causal network. We use total demand as the

objective function instead of sales revenue or profit since our dataset does not include cost and price

values. Nevertheless, our method can be easily adapted to include these parameters when they are

available.

Let 𝑦𝑖 𝑗 indicate the inclusion of a product in the assortment, where 𝑦𝑖 𝑗 = 1 if and only if product

𝑖 from category 𝑗 is included in the assortment. Let 𝑑𝑖 𝑗 represent the total demand rate for product

𝑖 from category 𝑗 . Additionally, we define 𝑧𝑖 𝑗 as a dummy binary variable and 𝑀 as a large positive

constant to make sure demand rate 𝑑𝑖 𝑗 remains non-negative. Lastly, we define 𝐾 as the parameter

representing the maximum number of products included in the assortment. We denote the problem of

finding optimal assortment of size 𝐾 given a causal product network G = (𝑉, 𝐸) and edge coefficients

𝛽
𝑖 𝑗

𝑖′ 𝑗′ for (𝑥𝑖′ 𝑗′→ 𝑥𝑖 𝑗) ∈ 𝐸 as CPN-MIP(G, 𝜷) and formulate it as follows:

maximize
y,d,z

∑︁
𝑖∈𝐼 𝑗 , 𝑗∈𝐽

𝑑𝑖 𝑗 (10a)

subject to 𝑑𝑖 𝑗 ≤ 𝑎𝑖 𝑗 · 𝑦𝑖 𝑗 +
∑︁

(𝑖′ , 𝑗′ ) ∈𝑝𝑎𝑟𝑖 𝑗

𝛽
𝑖 𝑗

𝑖′ 𝑗′ · 𝑑𝑖′ 𝑗′ +𝑀 · (1− 𝑧𝑖 𝑗), ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽, (10b)

𝑎𝑖 𝑗 · 𝑦𝑖 𝑗 +
∑︁

(𝑖′ , 𝑗′ ) ∈𝑝𝑎𝑟𝑖 𝑗

𝛽
𝑖 𝑗

𝑖′ 𝑗′ · 𝑑𝑖′ 𝑗′ ≤ 𝑀 · 𝑧𝑖 𝑗 , ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽, (10c)

CPN-MIP(G, 𝜷): 𝑎𝑖 𝑗 · 𝑦𝑖 𝑗 +
∑︁

(𝑖′ , 𝑗′ ) ∈𝑝𝑎𝑟𝑖 𝑗

𝛽
𝑖 𝑗

𝑖′ 𝑗′ · 𝑑𝑖′ 𝑗′ ≥ −𝑀 · (1− 𝑧𝑖 𝑗), ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽, (10d)

𝑦𝑖 𝑗 ≤ 𝑧𝑖 𝑗 , ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽, (10e)

𝑑𝑖 𝑗 ≤ 𝑀 · 𝑦𝑖 𝑗 , ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽, (10f)∑︁
𝑖∈𝐼 𝑗 , 𝑗∈𝐽

𝑦𝑖 𝑗 ≤ 𝐾, (10g)

𝑦𝑖 𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽, (10h)

𝑧𝑖 𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽. (10i)
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The objective function maximizes the total demand across all the products in the assortment.

Constraint (10b) ensures that the demand 𝑑𝑖 𝑗 for product 𝑖 from category 𝑗 does not exceed the

sum of its base demand rate, i.e., 𝑎𝑖 𝑗 · 𝑦𝑖 𝑗 and the spillover demand from its parent products, i.e.,∑
(𝑖′ , 𝑗′ ) ∈𝑝𝑎𝑟𝑖 𝑗 𝛽

𝑖 𝑗

𝑖′ 𝑗′ · 𝑑𝑖′ 𝑗′ . Notice that 𝑎𝑖 𝑗 · 𝑦𝑖 𝑗 +
∑
(𝑖′ , 𝑗′ ) ∈𝑝𝑎𝑟𝑖 𝑗 𝛽

𝑖 𝑗

𝑖′ 𝑗′ · 𝑑𝑖′ 𝑗′ can be negative if 𝛽𝑖 𝑗
𝑖′ 𝑗′ ≤ 0 for

some (𝑖′, 𝑗 ′) ∈ 𝑝𝑎𝑟𝑖 𝑗 . The term 𝑀 · (1 − 𝑧𝑖 𝑗) in constraint (10b) ensures that the demand rate 𝑑𝑖 𝑗
remains non-negative, and enables us to capture substitution and complementarity effects in the

same model. Constraint (10c) ensures that 𝑧𝑖 𝑗 is 1 when 𝑎𝑖 𝑗 · 𝑦𝑖 𝑗 +
∑
(𝑖′ , 𝑗′ ) ∈𝑝𝑎𝑟𝑖 𝑗 𝛽

𝑖 𝑗

𝑖′ 𝑗′ · 𝑑𝑖′ 𝑗′ is positive

and constraint (10d) ensures that 𝑧𝑖 𝑗 is 0 when 𝑎𝑖 𝑗 · 𝑦𝑖 𝑗 +
∑
(𝑖′ , 𝑗′ ) ∈𝑝𝑎𝑟𝑖 𝑗 𝛽

𝑖 𝑗

𝑖′ 𝑗′ ·𝑑𝑖′ 𝑗′ is negative. Constraint

(10e) ensures that if 𝑧𝑖 𝑗 = 0, which occurs when 𝑎𝑖 𝑗 · 𝑦𝑖 𝑗 +
∑
(𝑖′ , 𝑗′ ) ∈𝑝𝑎𝑟𝑖 𝑗 𝛽

𝑖 𝑗

𝑖′ 𝑗′ · 𝑑𝑖′ 𝑗′ is negative, then

product 𝑖 from category 𝑗 is not included in the assortment, i.e., 𝑦𝑖 𝑗 = 0. Constraint (10f) ensures

that if product 𝑖 in category 𝑗 is not selected to be in the assortment, i.e., 𝑦𝑖 𝑗 = 0, the demand rate

𝑑𝑖 𝑗 cannot be positive. Lastly, constraint (10g) ensures the total number of products selected in the

assortment does not exceed 𝐾.

To examine the value of considering the causal relations among product purchases in assortment

decisions, we compared the performance of CPN-MIP(G, 𝜷), which considers both within-category

and across-category relations, with that of the traditional MNL model, which focuses solely on

within-category relations. Based on van Ryzin and Mahajan (1999), we first estimate a choice model

separately for each product category in Data II. Then, using this choice model as input, we maximize

the objective function of total expected sales across all categories in the theme subject to the linking

constraint that at most 𝐾 products are stocked. The estimation dataset and the objective function

of the optimization problem are identical across the CPN and MNL models, with the only difference

being in the assumed choice model. To solve the constrained MNL assortment optimization problem,

we utilize the majorization result in van Ryzin and Mahajan (1999) for within category optimization

to generate candidate solutions and apply the capacity constraint to obtain the best solution across

categories. We report the pseudocode for this optimization in Appendix D.

Figure 8 presents a visual comparison of assortment strategies for the prepared food theme

deployed by the CPN and MNL models for different values of 𝐾, where 𝐾 takes on the values 5,

10, 15, and 20. The bar graphs highlight the number of selected products from five distinct depart-

ments within the prepared food theme: frozen foods, canned food, deli, beverages, and condiments.

For each value of 𝐾, the comparison between the CPN and MNL models is illustrated separately

for both brick-and-mortar and online channels, represented by different colored bars within each

category. We observe a consistent trend where the CPN model tends to allocate more selections

towards the beverages category across all 𝐾 values. This emphasis is due to the fact that the CPN

model generally does not find a substitution effect among products in the beverages category, with

the only exceptions being the negative effects from ‘Cola - Coca Cola’ to ‘Citrus Berry Soda’ and
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Figure 8 Comparison of assortment strategies for the CPN and MNL models (prepared food theme)

from ‘Cola - Pepsi’ to ‘Still Water’ in the brick-and-mortar channel. Except for these instances, all

other beverage relationships are found to be positive, implying that a diverse assortment of bev-

erages enhances total demand. In contrast, the MNL model naturally assumes substitution effects

within each category, leading to a smaller assortment. We also find that the CPN model discovers

that there is no interaction between sugary beverages and diet beverages. The MNL model would

automatically force substitution unless these products are treated as separate categories; this type

of manual classification is difficult to do in very large datasets with many latent attributes.

As the value of 𝐾 increases, the CPN model strategically includes more products from the frozen

and canned foods categories. This strategy illustrates how the CPN model leverages the underly-

ing relationships among products from different categories to optimize the assortment. In contrast,

the MNL model focuses on optimizing selections within individual categories based on their inter-

nal demand dynamics, rather than on their interactions with other categories. Consequently, the

MNL model may not fully capture the additional consumer demand that could be generated from

strategically placed cross-category products.

Table 6 demonstrates that the assortment strategies derived from the CPN model outperform

those from the MNL model by 20.00% to 41.72% in total expected sales across different assort-

ment sizes and channels. These differences highlight the advantages of employing a causal modeling

approach in assortment planning, enabling retailers to develop more sophisticated strategies that

account for the complex nature of cross-category purchase behaviors.
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Table 6 Percentage difference in expected sales between the CPN- and MNL-based assortment
strategies

Basket Sizes 𝐾 = 5 𝐾 = 10 𝐾 = 15 𝐾 = 20

Brick-and-Mortar (B&M) Channel 20.00 27.35 25.87 25.16
Online Channel 23.00 41.72 41.24 25.53

Note: The percentage difference between the CPN and MNL models is calculated as
(Expected Sales from CPN /Expected Sales from MNL − 1) × 100%.

8. Conclusion

Our paper demonstrates the usefulness of causal product networks as a methodology for studying

large-scale basket-shopping data. We show that causal product networks can effectively and compre-

hensively capture both complementarity and substitution effects within the same model, they can

be estimated from existing archival data without the need to conduct costly field experiments, and

they reveal practically useful insights regarding customers’ shopping behavior. Using extensive data

from Numerator, a market research company, we show that this method more accurately represents

product relationships in shopping baskets and requires fewer parameters than either complete or

correlation-based networks. Further, it also describes causal relationships in shopping baskets more

effectively than category-level specifications. Finally, our analysis demonstrates that online shopping

channels exhibit fewer causal relationships among product purchases compared to brick-and-mortar

channels, highlighting differences in consumer behavior across retail contexts. To examine the value

of causal product networks in multiple category assortment optimization, we propose a mixed-integer

program that uses the constructed networks. We find that our causal model outperforms the MNL

model by 20.00% to 41.72% in total sales across various assortment sizes and both brick-and-mortar

and online channels. Moreover, we observe distinct assortment strategies between the causal prod-

uct network and MNL models, which reveals insights into the assortment implications of consumer

behavior. These results demonstrate the value of causal structure learning to characterize consumer

basket-shopping behavior and provide insights into the relationships between product categories.

While our paper takes the first step towards using causal discovery to model basket-shopping

behavior, there are several important limitations to note. First, our model can be enriched by incor-

porating additional retail data such as prices, promotions, and store layouts. Expanding the model

to include these factors would allow for a more nuanced understanding of the various factors that

influence consumer behavior, potentially leading to even more effective assortment strategies and

more accurate identification of causal relationships. Second, while our approach leverages observa-

tional data to infer causal relationships, it lacks the experimental validation typically required in

traditional economic studies. Future research can focus on integrating controlled field experiments

to validate the causal networks identified through our model. Finally, our study does not account for
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customer heterogeneity. Future research could explore incorporating differences in consumer prefer-

ences and behavior patterns by utilizing panel data. This approach would allow the model to capture

individual-level variations, enabling more personalized and accurate predictions of basket-shopping.
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Appendix A: Graphical illustration of four Meek rules

Figure 9 graphically illustrates the four Meek rules that correspond to (R1), (R2), (R3), and (R4) in Algo-

rithm 2.

Figure 9 Meek rules

Appendix B: Product Lists of Five Themes

Tables 7, 8, and 9 display the most frequently purchased products across both the brick-and-mortar and online

channels, the brick-and-mortar channel only, and the online channel only, respectively. Due to Numerator’s

data disclosure policy, we have concealed the brand information and are only displaying the product lists

without brand details.

(See next page for the tables.)
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Table 7 Top B&M and online products

Theme 1
(Pasta)

Pasta & Noodle Spaghetti, Dry, Macaroni, Penne, Rotini
Meat Steaks, Ground Beef, Chicken, Lunch Packs, Whole Cuts &

Roasts, Pork Chop, Sausage-Pork
Produce Bananas, Onions, Tomatoes, Apples, Grapes, Avocado, Cucum-

ber, Potatoes, Lettuce, Strawberries
Dairy Milk, Coffee Creamers, Shredded Cheese, Cream Cheese, Sour

Cream, Greek Yogurt
Condiments Nut Butters, Salad Dressings, Salsa, Hummus, Mayonnaise, Jam,

Jelly & Marmalades

Theme 2
(QSR)

QSR Beverages Cola, Pepper-Style Soda, Hot Coffee, Citrus & Berry Soda
QSR Breakfast Hash Browns, Donuts, Sausage Breakfast Sandwich, Ham Break-

fast Sandwich
QSR Sandwiches & Wraps Beef Burger, Crispy Chicken Sandwich
QSR Sauces & Condiments Ketchup, BBQ Sauce, Mild Sauce, Ranch Dip, Hot Sauce
QSR Mexican Chicken Quesadilla, Steak Taco, Veggie Burrito, Steak Nachos,

Steak Burrito
QSR Snack & Sides French Fries, Potato Chips
QSR Desserts Milk Shake, Pie, Cookies, Ice Cream Cone
QSR Entrees Chicken Nuggets, Bone-In Chicken
QSR Italian Hand Tossed Pizza, Pan Pizza, Thin Crust Pizza, Breadsticks
QSR Salads Chicken Cobb Salad, Chicken Garden Salad, Southwest Chicken

Salad

Theme 3
(Bakery)

Bakery Sweet Goods Donuts, Muffins, Cakes, Cookies, Snack Pies, Pastries, Pies
In-Store Bakery Bread & Breadsticks, Rolls, Bagels, Croissants, Tortillas, Italian

Bread, Buns
Packaged Bakery Tortillas, Bagels, Buns, English Muffins, Rolls, Wheat Bread,

White Bread
Baking & Cooking Pasta & Pizza Sauces, Sugar, Barbecue Sauce, Baking Chips,

Pudding, Custard & Mousse Mix, Marshmallows, Tomato Sauce,
Paste & Puree, Gelatin & Jello Mix, Cake Mixes, Dessert Syrups

Dairy Milk, Coffee Creamers, Shredded Cheese, Cream Cheese, Sour
Cream, Greek Yogurt

Theme 4
(Prepared
Food)

Frozen Foods Frozen Breakfast, Frozen Chicken, French Fries, Single Serve
Meals, Packaged Ice Cream, Pizza Bites/Rolls

Canned Prepared Beans, Canned Tuna, Canned Tomatoes, Variety Beans,
Applesauce, Fruit Cups, Canned Green Beans

Deli & Prepared Foods Chicken-Prepared, Deli Salad, Pork-Deli, Ready-Made Sand-
wiches & Wraps-Prepared, Turkey-Deli, Sushi-Prepared

Beverages Cola, Sports Drinks, Citrus & Berry Soda, Still Water, Seltzers &
Sparkling Water

Condiments Nut Butters, Salad Dressings, Salsa, Hummus, Mayonnaise, Jam,
Jelly & Marmalades

Theme 5
(Unprepared
Food)

Produce Bananas, Onions, Tomatoes, Apples, Grapes, Avocado, Cucum-
ber, Potatoes, Lettuce, Strawberries

Shelf Stable Meals Canned Soups, Mac & Cheese, Ramen & Noodle Soups, Potato
Mixes, Pasta Dishes, Rice Dishes

Meat Steaks, Ground Beef, Chicken, Lunch Packs, Whole Cuts &
Roasts, Pork Chop, Sausage, Pork-Mainstream

Herbs & Spices Mexican Seasoning, Grill Seasoning, Garlic Powder & Garlic Salt,
Chili Seasoning

Condiments Nut Butters, Salad Dressings, Salsa, Hummus, Mayonnaise, Jam,
Jelly & Marmalades

Note: (1) This table displays product names without brand information, and duplicate names across different brands have been
removed; (2) The top products are those that appear most frequently in both online and brick-and-mortar baskets.
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Table 8 Top B&M products

Theme 1
(Pasta)

Pasta & Noodle Spaghetti, Penne, Dry, Rotini, Macaroni
Meat Chicken, Lunch Packs, Pork-Mainstream, Steaks, Ground Beef,

Pork Chop, Sausage-Pork, Whole Cuts & Roasts
Produce Cucumber, Apples, Onions, Tomatoes, Potatoes, Bananas, Straw-

berries, Grapes, Avocado, Lettuce
Dairy Greek Yogurt, Shredded Cheese, Coffee Creamers, Milk, Sour

Cream, Cream Cheese
Condiments Salsa, Nut Butters, Jam, Jelly & Marmalades, Hummus, Mayon-

naise, Salad Dressings

Theme 2
(QSR)

QSR Beverages Citrus & Berry Soda, Pepper-Style Soda, Frappuccino, Cola
QSR Breakfast Sausage Breakfast Sandwich, Hash Browns, Donuts, Ham Break-

fast Sandwich
QSR Sandwiches & Wraps Beef Burger, Crispy Chicken Sandwich
QSR Sauces & Condiments Ranch Dip, Mild Sauce, BBQ Sauce, Ketchup, Hot Sauce
QSR Mexican Steak Taco, Veggie Burrito, Chicken Quesadilla, Steak Nachos,

Chicken Taco
QSR Snack & Sides French Fries
QSR Desserts Pie, Milk Shake, Cookies
QSR Entrees Bone-In Chicken, Chicken Nuggets
QSR Italian Breadsticks, Pan Pizza, Thin Crust Pizza, Hand Tossed Pizza
QSR Salads Chicken Garden Salad, Chicken Cobb Salad, Southwest Chicken

Salad

Theme 3
(Bakery)

Bakery Sweet Goods Cookies, Packaged Muffins, Snack Pies, Pastries, Pies, Muffins,
Donuts, Cakes

In-Store Bakery Tortillas, Italian Bread, Buns, Croissants, Bread & Breadsticks,
Rolls, Bagels

Packaged Bakery Bagels, Buns, Wheat Bread, Sandwich Bread, White Bread, Tor-
tillas, English Muffins, Rolls

Baking & Cooking Sugar, Cake Mixes, Gelatin & Jello Mix, Barbecue Sauce, Dessert
Syrups, Pudding, Custard & Mousse Mix, Baking Chips, Marsh-
mallows, Pasta & Pizza Sauces, Tomato Sauce, Paste & Puree

Dairy Greek Yogurt, Shredded Cheese, Coffee Creamers, Milk, Sour
Cream, Cream Cheese

Theme 4
(Prepared
Food)

Frozen Foods French Fries, Syrup Carriers-Frozen Breakfast, All Other Single
Serve Meals, Packaged Ice Cream, Nutrition Single Serve Meals,
Frozen Chicken, Prepared Entrees-Frozen Breakfast

Canned Fruit Cups, Canned Tomatoes, Applesauce, Canned Green Beans,
Canned Tuna, Variety Beans, Prepared Beans

Deli & Prepared Foods Turkey-Deli, Ready-Made Sandwiches & Wraps-Prepared, Pork-
Deli, Chicken-Prepared, Deli Salad, Sushi-Prepared

Beverages Still Water, Seltzers & Sparkling Water, Pepper & Skipper Soda,
Sports Drinks, Citrus & Berry Soda, Cola

Condiments Salsa, Nut Butters, Jam, Jelly & Marmalades, Hummus, Mayon-
naise, Salad Dressings

Theme 5
(Unprepared
Food)

Produce Cucumber, Apples, Onions, Tomatoes, Potatoes, Bananas, Straw-
berries, Grapes, Avocado, Lettuce

Shelf Stable Meals Ramen & Noodle Soups, Pasta Dishes, Canned Soups, Rice
Dishes, Potato Mixes, Mac & Cheese

Meat Chicken, Lunch Packs, Pork-Mainstream, Steaks, Ground Beef,
Pork Chop, Sausage-Pork, Whole Cuts & Roasts

Herbs & Spices Chili Seasoning, Garlic Powder & Garlic Salt, Mexican Seasoning,
Grill Seasoning

Condiments Salsa, Nut Butters, Jam, Jelly & Marmalades, Hummus, Mayon-
naise, Salad Dressings

Note: (1) This table displays product names without brand information, and duplicate names across different brands have been
removed; (2) The top products are those that appear most frequently in brick-and-mortar baskets.



44

Table 9 Top online products

Theme 1
(Pasta)

Pasta & Noodle Spaghetti, Penne, Dry, Rotini, Macaroni, Lasagna, Bow-Tie
Meat Chicken, Lunch Packs, Pork-Mainstream, Pork Bacon, Steaks,

Ground Beef, Sausage-Pork
Produce Cucumber, Salad Greens, Apples, Onions, Tomatoes, Bananas,

Grapes, Avocado, Lettuce
Dairy Cream, Butter, Shredded Cheese, Natural Sliced Cheese, Coffee

Creamers, Milk, Cream Cheese
Condiments Salsa, Nut Butters, Jam, Jelly & Marmalades, Hummus, Mayon-

naise, Salad Dressings

Theme 2
(QSR)

QSR Beverages Cola, Hot Coffee, Lemonade
QSR Breakfast Bagels, Bakery Other, Hash Browns, Muffins
QSR Sandwiches & Wraps Grilled Chicken Sandwich, Crispy Chicken Sandwich, Bacon

Breakfast Sandwich
QSR Sauces & Condiments Hot Sauce, Ketchup, Mild Sauce, Beef Burger, Jam & Jelly
QSR Mexican Chicken Quesadilla, Steak Taco
QSR Snack & Sides French Fries
QSR Desserts Cookies, Milk Shake, Pie
QSR Entrees Chicken Nuggets, Bone-In Chicken
QSR Italian Hand Tossed Pizza, Breadsticks, Cheese Bread, Pan Pizza
QSR Salads Chicken Garden Salad, Chicken Cobb Salad, Southwest Chicken

Salad

Theme 3
(Bakery)

Bakery Sweet Goods Cookies, Packaged Muffins, Snack Pies, Muffins, Donuts, Pies
In-Store Bakery Tortillas, Buns, Croissants, Bread & Breadsticks, Rolls, Ciabatta
Packaged Bakery Bagels, Buns, Wheat Bread, White Bread, Tortillas, English

Muffins, Rolls
Baking & Cooking Distilled Vinegar, Sugar, Barbecue Sauce, Pudding, Custard &

Mousse Mix, Baking Chips, Marshmallows, Pasta & Pizza Sauces,
Tomato Sauce, Paste & Puree

Dairy Cream, Butter, Shredded Cheese, Natural Sliced Cheese, Coffee
Creamers, Milk, Cream Cheese

Theme 4
(Prepared
Food)

Frozen Foods Frozen Mixed Vegetables, French Fries, Syrup Carriers-Frozen
Breakfast, Frozen Broccoli, Packaged Ice Cream, Nutrition Single
Serve Meals, Frozen Chicken, Prepared Entrees-Frozen Breakfast

Canned Fruit Cups, Canned Tomatoes, Applesauce, Canned Green Beans,
Canned Tuna, Canned Corn, Variety Beans, Prepared Beans

Deli & Prepared Foods Turkey-Deli, American Cheese (Deli), Ready-Made Sandwiches &
Wraps-Prepared, Pork-Deli, Deli Salad

Beverages Still Water, Seltzers & Sparkling Water, Fruit Juice, Sports
Drinks, Cola

Condiments Salsa, Nut Butters, Jam, Jelly & Marmalades, Hummus, Mayon-
naise, Salad Dressings

Theme 5
(Unprepared
Food)

Produce Fresh Cucumber, Salad Greens, Apples, Onions, Tomatoes,
Bananas, Grapes, Avocado, Lettuce

Shelf Stable Meals Ramen & Noodle Soups, Pasta Dishes, Canned Soups, Rice
Dishes, Mac & Cheese

Meat Chicken, Lunch Packs, Pork-Mainstream, Pork Bacon, Steaks,
Ground Beef, Sausage-Pork

Herbs & Spices Chili Seasoning, Onion Powder, Grill Seasoning, Cinnamon (Pow-
der & Sticks), Mexican Seasoning, Garlic Powder & Garlic Salt

Condiments Salsa, Nut Butters, Jam, Jelly & Marmalades, Hummus, Mayon-
naise, Salad Dressings

Note: (1) This table displays product names without brand information, and duplicate names across different brands have been
removed; (2) The top products are those that appear most frequently in online baskets.
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Appendix C: Robustness Checks (Testing Hypotheses 1 and 2 for B&M and Online
Channels Separately)

Having established that brick-and-mortar and online channels can differ in terms of causal connections in

Hypothesis 3, we conduct robustness checks to investigate whether Hypotheses 1 and 2 hold for each channel

separately using Data II. For causal product network construction, we follow the subsampling steps discussed

in §6.2. For each theme and product set, we create 50 distinct sub-samples from the corresponding brick

and mortar and online dataset, separately. The final causal networks are constructed by including edges that

appear in more than 30% of the corresponding networks. To test Hypothesis 1, we construct the complete

and correlation-based product networks for each channel, considering each of the five themes and product

sets using Data II. To test Hypothesis 2, we base our analysis on the final brick and mortar and online

causal networks and explore the category level, product-to-category, and category-to-product specifications,

as discussed in §6.2.

Tables 10 and 11 present the AIC scores for each theme within the B&M and online channels, respectively.

For the B&M channel, Table 10 shows that causal product networks consistently have the lowest AIC scores

across all five themes, supporting both Hypotheses 1 and 2. For the online channel, Table 11 shows that

causal product networks have the lowest AIC scores across all themes except QSR. This exception is likely

due to the limited availability of QSR options in the online channel, as our dataset contains only 372 baskets

for this theme. Overall, the online channel supports Hypotheses 1 and 2, except for the QSR theme due to

insufficient data.

Table 10 AIC scores of six network structures (B&M channel)

AIC Scores
Network Structure (a) (b) (c) (d) (e) (f)
Theme 1 (Pasta) 434,287 434,459 379,375 472,665 470,332 462,954
Theme 2 (QSR) 400,257 398,786 302,397 426,723 425,004 418,412
Theme 3 (Bakery) 206,276 205,360 164,234 222,585 221,609 216,441
Theme 4 (Prepared Food) 318,785 325,329 204,119 354,248 353,327 351,881
Theme 5 (Unprepared Food) 873,727 872,505 200,014 904,788 904,314 896,668

Number of Parameters
Network Structure (a) (b) (c) (d) (e) (f)
Theme 1 (Pasta) 2,750 784 57 14 43 43
Theme 2 (QSR) 3,000 826 46 21 41 35
Theme 3 (Bakery) 2,750 465 42 14 34 34
Theme 4 (Prepared Food) 2,750 438 51 15 37 38
Theme 5 (Unprepared Food) 2,750 671 36 12 28 25

Note: (1) The size of product sets for all the themes is 50; (2) The numbers of baskets are 14472,
9247, 7252, 6684, and 12901 for themes 1-5, respectively.
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Table 11 AIC scores of six network structures (online channel)

AIC Scores
Network Structure (a) (b) (c) (d) (e) (f)
Theme 1 (Pasta) 517,146 515,696 393,831 545,159 541,324 533,827
Theme 2 (QSR) 5,320 9,944 11,869 20,413 18,927 19,593
Theme 3 (Bakery) 206,276 205,360 164,234 222,585 221,609 216,441
Theme 4 (Prepared Food) 428,622 430,103 55,925 460,231 460,192 457,196
Theme 5 (Unprepared Food) 524,803 523,068 352,612 546,854 544,392 538,789

Number of Parameters
Network Structure (a) (b) (c) (d) (e) (f)
Theme 1 (Pasta) 2,750 996 87 15 55 61
Theme 2 (QSR) 3,000 113 34 27 33 32
Theme 3 (Bakery) 2,750 599 52 13 41 39
Theme 4 (Prepared Food) 2,750 612 11 6 10 9
Theme 5 (Unprepared Food) 2,750 660 55 15 43 44

Note: (1) The size of product sets for all the themes is 50; (2) The numbers of baskets are 6613, 372,
6502, 6240, and 6340 for themes 1-5, respectively.

Appendix D: Greedy Algorithm for MNL Model

The greedy algorithm described in Algorithm 3 is used to find the optimal assortment strategy for the

Multinomial Logit (MNL) model. It iteratively selects items that maximize incremental utility until the

assortment size limit is reached, returning the optimal assortment strategy and the objective value of the

MNL model.

Algorithm 4: Greedy Algorithm for MNL Model

Input: 𝐼 𝑗 = {1, ..., 𝑛}, 𝐽 = {1, ..., 𝑚}, 𝐾 and 𝑞𝑖 𝑗 , 𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽 where 𝑞1 𝑗 ≥ · · · ≥ 𝑞𝑛 𝑗 .
Output: 𝑌 = {𝑦𝑖 𝑗 | 𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽}, Utility 𝑈.
Initialization: 𝑦𝑖 𝑗 = 0,∀𝑖 ∈ 𝐼 𝑗 , 𝑗 ∈ 𝐽, 𝐼𝑈 𝑗 = 0 and 𝑘 𝑗 = 0,∀ 𝑗 = 1, . . . , 𝑚.
1. Initialize 𝑆 = 0 and 𝑈 = 0.
2. While 𝑆 < 𝐾:
3. for each 𝑗 in {1, ..., 𝑚}:

4. Compute incremental utility 𝐼𝑈 𝑗 =

∑𝑘 𝑗+1
𝑤=0 𝑞𝑤 𝑗∑𝑘 𝑗+1

𝑤=0 𝑞𝑤 𝑗+𝑞0 𝑗

−
∑𝑘 𝑗

𝑤=0 𝑞𝑤 𝑗∑𝑘 𝑗

𝑤=0 𝑞𝑤 𝑗+𝑞0 𝑗

.

5. Select max{𝐼𝑈1, . . . , 𝐼𝑈𝑚} and the corresponding index 𝑗 ′.
6. Update 𝑘 𝑗′ = 𝑘 𝑗′ + 1, 𝑦𝑘 𝑗′ 𝑗′=1 and 𝑆 =

∑𝑚
𝑗=1 𝑘 𝑗 .

7. Compute 𝑈=
∑𝑚

𝑟=1

∑𝑘𝑚
𝑤=0 𝑞𝑤𝑟∑𝑘𝑚

𝑤=0 𝑞𝑤𝑟+𝑞0𝑟
.

8. Return 𝑌 and 𝑈.


