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Policymakers frequently implement short-term interventions (e.g., temporary healthy food subsidies) to
achieve long-term outcomes (e.g., lasting healthy eating habits). While the delay in observing these outcomes
presents challenges for immediate evaluation of effectiveness of these interventions, we can observe short-
term variables to get early insights into the long-term effects. However, identifying which of these short-
term variables will reliably indicate long-term changes remains challenging. To address this challenge, we
introduce a causal structure learning algorithm to uncover the causal relations among policy intervention,
short-term variables, and long-term outcome. Our algorithm combines short-term experimental and long-
term observational data and returns a graph in which causal relations are specified by directed edges. By
mapping out the underlying causal relations, we determine (i) which short-term variables are affected by
the policy change and (ii) which of these variables subsequently impact the long-term outcome. We develop
an identification strategy to consistently estimate the long-term treatment effect of a policy without waiting
for the long-term outcome to materialize. By selecting short-term outcomes (surrogates) and covariates
to control for, based on the causal relationships discovered in the graph, we derive a novel closed-form
expression to compute the long-term treatment effect. Our results demonstrate that the proposed method
enables earlier estimation of long-term effects, offering policymakers a valuable tool to refine their policy
implementation strategies. Additionally, our findings offer novel empirical insights into how government
agencies can effectively stimulate health-conscious grocery shopping. Our findings show that targeting specific
population segments for healthy product subsidies, especially those with historically low consumption of
healthy products, can produce lasting positive effects. In particular, younger consumers in urban areas
demonstrate a greater likelihood of maintaining healthier eating habits even after the subsidies end. Overall,
our paper provides policymakers with valuable insights and practical tools to enhance public healthy product
subsidy strategies. By allowing them to evaluate long-term impacts through short-term randomized controlled

trials, the framework we present helps refine policy design and optimize effectiveness.
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1. Introduction
Understanding the long-term consequences of policy interventions is essential in ensuring a policy’s
effectiveness and sustainability. For example, assesing the lasting impacts of government subsidies

for healthy eating on dietary habits can be critical in ensuring that these subsidies justify their



costs and result in enduring positive outcomes (Hinnosaar 2023). Similarly, before making job train-
ing programs widely available, identifying their long-term effects on labor market outcomes can
be essential for achieving the desired results (Hotz et al. 2006). However, focusing on long-term
outcomes makes it difficult for policymakers to assess the effectiveness of interventions as tracking
units over a long period of time is prohibitively costly or sometimes infeasible.

Similar challenges also arise in other fields beyond policymaking. In digital technology companies,
experimentation methods such as A /B tests are fundamental for assessing the effects of marketing or
operational decisions. Although A /B tests provide precise short-term insights, they often fall short of
capturing long-term impacts due to the fast-paced nature of business operations, where waiting for
extended periods is impractical. This limitation underscores the difficulty in making timely decisions
based on long-term effects (Gupta et al. 2019). In fact, there are plenty of examples where the
treatment effects measured in short-term experiments do not accurately reflect the actual long-term
impact. For instance, Dekimpe et al. (1998) assess the immediate and prolonged effects of price
promotions on different brands spanning across multiple product categories. Their findings indicate
that while price promotions can have a positive short-term impact on revenue, their long-term effects
can be mixed and may not always benefit the company. Moreover, in reality, the accuracy of long-
term predictions may also depend on the degree of pricing personalization (Jagabathula et al. 2022)
and price competition (Caro and Martinez-de Albéniz 2012), how strategic the decision makers are
(Chen et al. 2019, Esenduran et al. 2020), and the dynamic nature of the pricing decisions (Farias
and Van Roy 2010, Caro and Gallien 2012).

To bridge the gap between short-term results and long-term impacts, the seminal paper of Athey
et al. (2019) propose a framework that is based on combining short-term experimental data with
long-term historical sample through surrogate variables. A surrogate variable is an intermediate
outcome that can be measured in a shorter period of time and mediates the effects of interventions.
While initial studies focused on using a single surrogate (Prentice 1989), Athey et al. (2019) pro-
pose a surrogate index methodology that is based on combining multiple surrogates to improve the
accuracy of long-term effect estimation. Specifically, this approach involves using experimental data
where the treatment and surrogates are observed, but the long-term outcome is not. This is com-
plemented by historical data that includes both the surrogates and the long-term outcome but does
not include the treatment. Then the average treatment effect on the long-term outcome is identified
from the combination of these two samples without the need to wait for the outcome to be realized.
Athey et al. (2019) has led to numerous subsequent studies. Yang et al. (2023) extends this idea for
policy optimization, introducing an experimental framework designed to directly optimize targeting
policies for long-term customer retention and revenues. Other papers address the confounding fac-

tors when using observational datasets to infer the relationship between short-term surrogates and



longer-term outcomes (Athey et al. 2020, Imbens et al. 2022). In a similar spirit, Huang et al. (2023)
study the problem of estimating the “long-term effects of long-term treatments” which is different
from estimating the “carryover effects of short-term treatments”. Battocchi et al. (2021) develop a
methodology that extends beyond traditional surrogate-based approaches by accommodating con-
tinuous treatments and treatment policies with serial correlation. Anderer et al. (2022) propose a
Bayesian adaptive clinical trial design that uses data from surrogate and true outcomes to improve
decision-making. All existing research assumes that the surrogates mediating the treatment effect
are known a priori. However, identifying surrogates can be challenging because it requires precise
knowledge of the underlying causal pathways through which the treatment affects the outcome.

In this work, we complement recent surrogacy approaches by proposing a causal structure learning
algorithm that combines experimental and observational data to uncover the underlying causal
structure among treatment, long-term outcome, and other short-term variables. Causal structure
learning, unlike causal inference, focuses on identifying the presence or absence of causal relationships
between variables using the framework of graphical causal models (Pearl 2000, Spirtes et al. 2000).
The proposed causal structure learning algorithm returns a directed acyclic graph (DAG) that
visually represents these causal relationships. By mapping out these relationships, the causal graph
helps determine (i) which short-term variables are influenced by the treatment and (ii) which of
those variables, in turn, affect the long-term outcome. This is particularly valuable for decision-
makers, as it reveals relationships that may be unknown or extend beyond intuition and expert
opinion, enabling a data-driven method to identify surrogate variables that mediate the treatment
effect. Using the inferred causal graph, we then derive a closed-form expression for the average long-
term treatment effect, proving that it can be consistently estimated from the available experimental
and historical data under the standard assumptions in the surrogacy literature. We demonstrate the
performance of the proposed framework in estimating the lasting effects of temporary healthy food
subsidies using data from the U.S. Special Supplemental Nutrition Program for Women, Infants,
and Children (WIC). Our empirical results demonstrate that the proposed method enables earlier
estimation of long-term effects, potentially reducing experimental costs and allowing for timely
decision-making. In this regard, our paper effectively bridges the field of operations with graphical
causal models, econometric methods, and machine learning. Moreover, at a higher level, our paper
is related to the recent research in the operations management field studying experimental design
(Johari et al. 2022, Farias et al. 2022, Bojinov et al. 2023, Xiong et al. 2024), causal inference
(Ho et al. 2017, Kallus and Zhou 2021, Farias et al. 2021, Wang et al. 2022, Zhou et al. 2023, Ye
et al. 2023, Singal and Michailidis 2024, Eberhardt et al. 2024), and graph-based models (Lu and
Van Mieghem 2009, Bayati et al. 2018).



Our paper makes a significant contribution not only in terms of methodology but also in advancing
the understanding of the ongoing challenge of incentivizing healthy consumption through subsidies.
Despite nearly two decades since the World Health Organization® first highlighted this issue, there
remains a lack of clarity on the long-term effectiveness of the mechanisms designed to positively
impact the customers’ diet. While previous research has generally suggested that healthy product
subsidies have only a short-lived impact on consumer behavior (Hinnosaar 2023), our study presents
new evidence. We find that targeting specific segments of the population — particularly those with
a history of low healthy product consumption — can yield positive, lasting effects. Furthermore,
within this segment, younger consumers living in urban areas show a greater likelihood of main-
taining healthier consumption patterns even after the subsidies are removed. Our research provides
preliminary but compelling evidence for the need for more nuanced policies that consider the diverse
characteristics and geographic differences among consumers. Rather than a broad, ‘one-size-fits-all’
approach, effective healthy product subsidy related interventions may require tailoring strategies
to specific demographic and regional contexts to optimize long-term outcomes in healthy product
consumption.

Overall, our study first highlights the practical use of our methodological framework, which inte-
grates surrogate models and causal discovery techniques, to forecast the long-term effectiveness of
healthy product subsidies. In addition to introducing this innovative approach, we offer empirical
evidence that pinpoints key dimensions where the policy can achieve meaningful success. These
findings not only confirm the validity of our framework but also offer practical insights into specific
areas where the policy adjustments can be most effective. Furthermore, our paper equips policymak-
ers with the tools to refine public subsidy strategies by enabling them to assess long-term impacts
through field experiments in a significantly shorter timeframe. By providing a data-driven approach
to evaluate and adjust the policy, we believe this work offers critical insights for improving the design
and implementation of healthy product subsidies, ensuring they are more effective and targeted in

promoting lasting behavioral change.

1.1. Contributions
The major contributions of our study can be outlined as follows:

o Causal structure learning algorithm that integrates experimental and observational samples.
First, we present the COMB-PC algorithm, a causal structure learning algorithm that inte-
grates experimental and observational samples to uncover the underlying causal relationships
among the variables of interest (see details in §4). This algorithm consists of two major stages.

IWorld Health Organization (2004) Global strategy on diet, physical activity and health.
http://apps.who.int /gb/ebwha/ pdfyiles/WHA57/ASTR17 — en.pdf (accessedMay2012).



In the first stage of the COMB-PC algorithm, we focus on determining the skeleton of the
causal graph, which is an undirected graph depicting potential causal links without orienting
the direction of these links. Then, the second stage of the COMB-PC algorithm orients the
undirected edges present in the skeleton identified in the first stage. The COMB-PC algorithm,
through its phases of skeleton discovery and edge orientation, remains in spirit with the essence
of the PC algorithm (Spirtes et al. 2000). However, it introduces tailored adaptations to suit
our surrogacy framework, particularly with modifications that enable integrating short-term
experimental data with long-term observational data. Notably, this is the first study that uses
causal structure learning within a surrogacy framework, bridging two previously distinct yet
fundamentally connected research areas.?

o Long-term treatment effect identification strategy. Building on the discovered causal structure,
we develop a novel non-parametric identification strategy for the average long-term treatment
effect using short-term experimental data and long-term observational data (see details in
§5). More specifically, we use a two-step algorithmic framework for the graphs learned by
the COMB-PC algorithm. The first step focuses on finding a valid set of surrogate variables
that mediate the treatment effect for a given graph. The second step involves selecting an
appropriate adjustment set to control for confounders that may influence both the identified
surrogates and the long-term outcome. Using the identified surrogates and control variables,
we derive a closed-form formula that identifies the long-term treatment effect using both the
experimental and observational samples.

e Validation of the proposed frameworks using synthetic data. We numerically evaluate the accu-
racy of both the COMB-PC algorithm and the proposed identification strategy using synthetic
data across varying graph densities (see details in §6). Our results indicate that the accuracy
of causal structure learning is high for sparser graphs but decreases as graph density increases.
We find that this reduced accuracy in causal structure learning for denser graphs then affects
the accuracy of the treatment effect estimations, underscoring the importance of correctly
identifying underlying causal graphs in obtaining reliable treatment effect estimations.

e Case study: analyzing the long-term effects of subsidies on healthy food products. In our real-
world case study, we demonstrate the performance of the proposed framework in estimating
the long-term effects of temporary healthy food subsidies within the context of grocery shop-
ping behavior. Specifically, we focus on assessing the impact during the second and third years
after the subsidy program ends. We use short-term variables observed within the first year

2 Imbens (2020) identifies the surrogacy setting as an area that could benefit from the use of graphical causal models

to clarify underlying assumptions. In this work, we take this one step forward and propose a framework to learn
surrogate variables using graphical causal models.



post-subsidy, such as changes in purchasing patterns and consumer responsiveness to discounts
as potential surrogates. We first discover the underlying causal relations among the interven-
tion, short-term variables, and the long-term outcome using the COMB-PC algorithm. Then
using the discovered graph, we identify the surrogate variables and control variables to use in
estimating the long-term effect. Our results demonstrate that we can accurately estimate the
impact of these subsidies on the second and third years through the identified surrogates by
using only one year of data.

e Health-conscious grocery shopping: managerial/societal insights. Importantly, in addition to
the methodological contribution, our paper makes a substantial empirical contribution to the
literature on health-conscious grocery shopping. As government agencies increasingly recognize
the importance of promoting healthy product choices for public health, our research identifies
a specific subset of individuals who could benefit more significantly from healthy product sub-
sidies, though such subsidies might not be universally effective as shown by Hinnosaar (2023).
Our novel findings suggest that it might be worth targeting healthy product subsidies towards
individuals with limited exposure to healthy products, as they are likely to experience a more
sustainable impact, ensuring permanence in healthy product consumption and thus a more effi-
cient use of taxpayer funds. This targeting strategy might be grounded in two key mechanisms:
the informational effect, where subsidies can educate consumers about the benefits of healthy
eating, and the consideration set expansion effect, making consumers likely to try and continue
purchasing healthy products after initial financial incentives.? Conversely, individuals already
frequently purchasing healthy products may only respond to these subsidies in the short term.
Thus, while broad subsidy policies like the reform of the U.S. special supplemental nutrition
program for women, infants, and children may not alter long-term purchasing behaviors across
all households, targeting those less exposed to healthy options could create lasting changes in
their consumption patterns.

o The long-term impact of healthy product subsidies: heterogeneous treatment effect. We also find
that younger consumers, along with those residing in high-density, urban areas, are more likely
to maintain healthy consumption habits even after subsidies are discontinued. This suggests
two key points: first, younger consumers appear more inclined to develop lasting healthy eating
habits when nudged by short-term subsidies. Second, the increased exposure to a broader
range of healthy food options and the convenience of accessing these products in urban areas
likely contribute to sustained behavioral changes. These factors emphasize the importance of
targeted policies that consider both demographic and geographic characteristics to enhance the

long-term effectiveness of these public health interventions.

3 Although verifying these mechanisms empirically is challenging using our current data.



The remainder of the paper is organized as follows. Section §2 reviews foundational concepts in
graphical causal models, which may be skipped by readers already familiar with the topic. Sec-
tion §3 formally defines the problem and discusses the key assumptions. Section §4 presents the
causal structure learning algorithm. Section §5 provides an identification framework to estimate
the long-term treatment effect using causal graphs. Sections §6 and §7 examine the performance
of the proposed framework based on the synthetic experiment and real-world dataset, respectively.
Additionally, we conduct a comprehensive empirical study in Section §7, providing significant policy
insights into the effectiveness of healthy product subsidies for targeted consumer groups. Section §8

concludes.

2. Graphical Causal Models

Graphical causal models (Pearl, 2000; Spirtes et al., 2000) use directed graphs to represent causal
relationships among multiple variables. Let G = (V,E) be a directed graph, where V denotes a set
of nodes and E represents the set of edges, such that E C V x V. In this graphical representation,
each edge in G signifies a direct causal connection between the corresponding nodes.

We next define some graphical preliminaries that are used throughout the paper. Any two nodes
X and Y are called adjacent if there is an edge X — Y or X <Y in the corresponding graph G. The
parents and children of a node X represent its direct causes and effects, respectively, in the graph
G. We say that a node Y is a collider on a path if its adjacent edges point into ¥, i.e., >V . A
noncollider on a path is a node Y that is either a mediator (— Y —) or a common cause («—Y —).
In Figure 1(a), node Y is a collider on path X - Y « Z, in Figure 1(b) node Y is a mediator on
path X -»Y — Z, and in Figure 1(c) node Y is a common cause on path X <Y — Z. A v-structure,
also known as an unshielded collider, is a specific configuration of nodes in a graph. A v-structure
consists of two parent nodes directing edges towards a common child node, without an edge between
the parents, forming a "V" shape. Any node that is connected to node X by a directed path is called
a descendant of X, while any node connected to X by a directed path is an ancestor of X. We refer
to the skeleton of a graph G as the undirected graph obtained by replacing directed edges in G with
undirected edges. For instance, while the edge orientations vary among the graphs in Figure 1, their
underlying skeletons are identical.

We define a path between two nodes X and Y as a sequence of nodes that starts with X, ends with
Y, and where each consecutive pair of nodes in the sequence is connected by an edge in the graph.
In this context, the direction of the edges does not matter; as long as there is a connection between
any two consecutive nodes in the sequence, it forms a valid path. In other words, although the edge
directions are considered, they do not impose any constraints on constructing a path between nodes.
A directed path from node X to node Y is a path in which all edges point towards node Y. Then, a
directed acyclic graph (DAG) is a directed graph without cycles.
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Figure 1 Illustrations of Collider, Mediator, and Common Cause Structures.

2.1. Causal Structure Learning

Causal modeling involves associating a probability distribution, denoted as Pg(V), with a graph
G = (V,E), which represents the causal relationships among the variables or nodes in the set V. The
underlying assumption is that the distribution Pg(V) is generated by the graph structure in a way
that allows factorization: Pg(V) =[Ixey Pg(X|Pa(X)), where Pa(X) represents the parents of node
X in G (Spirtes and Zhang 2016, Eberhardt 2017). In this context, the terms "node" and "variable"
can be used interchangeably, as they correspond to the graphical structure and the probability
distribution, respectively.

The two key assumptions that bridge the observed data and the causal structure are stated below.

AssuMPTION 1 (Causal Markov). Each variable X € V in a graph G = (V, E) is probabilistically

independent of its non-descendants given its parents.

AssuMPTION 2 (Faithfulness). The only independences present in the probability distribution

are those that are implied by the graph structure through the causal Markov conditions.

AssuMPTION 3 (Causal Sufficiency). For any pair of variables in V, all common causes of

those variables are also contained within V.

The first assumption, the causal Markov condition, permits us to transition from the causal graph
to the observed probabilistic independencies. Conversely, the faithfulness condition enables us to
deduce the structure of the causal graph from observed data independencies. Lastly, the causal
sufficiency assumption ensures that all common causes of any pair of variables in the set V are also
contained within V, thereby excluding the existence of any hidden or unobserved confounders.

Due to the close relationship between the causal structure and the resulting data distribution,
many algorithms for causal structure learning leverage the identifiable independence structure in
the data to make inferences about the underlying causal relationships. A key concept essential for
this inference is d-separation (Geiger et al. 1990), often considered as the graphical equivalent of

probabilistic independence. It is based on the notion of a blocked path:



DEFINITION 1 (BLOCKED PATHS). A path between nodes X and Y is considered unblocked with
respect to a set of nodes C if every collider Z on the path is in C or has a descendant in C, and
no other nodes on the path are in C. If these conditions do not hold, the path is considered blocked
with respect to C (Pearl 2000).

We can now introduce the concept of d-separation.

DEFINITION 2 (D-SEPARATION). Two nodes X and Y are said to be d-separated with respect to
a conditioning set C (denoted as i L j|C) if all paths between them are blocked. Conversely, if
there exists at least one unblocked path between X and Y given C, they are considered d-connected
(denoted as i L j|C) (Pearl 2000).

REMARK 1. Under the causal Markov and faithfulness conditions, a (conditional) independence
in Pg(V) is present if and only if there is a corresponding (conditional) d-separation in DAG G
(Pearl 2000).

Remark 1 highlights the correspondence between (conditional) independence in Pg(V) and (con-
ditional) d-separation in DAG G under the causal Markov and faithfulness conditions. This cor-
respondence serves as the fundamental framework for a wide range of causal structure learning
methods, providing a means to leverage observed independence patterns in data to infer underlying
causal relations.

To illustrate the notion of blocked paths and their connection to the principles outlined in Remark
1, we refer to Figure 1. In Figure 1(a), we see the path X — Y « Z where Y serves as a collider. Given
the conditioning set C =0, this path is considered ‘blocked’ since the collider, Y, is not included in
C. The path X —» Y « Z is the only path between X and Z within this figure. Since it is blocked, we
establish that X and Z are d-separated, signifying a lack of information flow between the two nodes.
By invoking Remark 1, we anticipate that X and Z to be marginally probabilistically independent,
in line with their status of being d-separated within the graph. On the other hand, when C =Y,
the path X — Y « Z transitions to being ‘unblocked’. This is because Y, being the only collider
on this path, is now included within the conditioning set C. Hence by Remark 1, we expect that
X and Z to be probabilistically dependent with respect to conditioning set C =Y. Conversely, in
Figure 1 (b) and (c), the paths X - Y — Z and X « Y — Z respectively are ‘unblocked’ when the
conditioning set is C = 0. This is due to the absence of colliders on these paths and the fact that Y,
acting as a noncollider, is not included in the conditioning set C. Hence, we expect that X and Z to
be marginally dependent. However, conditioning on C =Y blocks these paths and X and Z become
marginally independent with respect to conditioning set C=Y.

Despite different causal relationships in Figure 1(b) and 1(c), they imply the same independence
relations. In contrast, the independence relations in Figure 1(a), i.e., X L Z and X A Z |Y uniquely

identifies Y as a collider. These differences underscore the fact that colliders leave distinct signatures
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on conditional independence patterns. However, mediator and common causes can result in identical
patterns in conditional independence relations. This demonstrates that the observable data cannot
uniquely identify the underlying causal graph, as both mediators and common causes can generate
identical patterns. This idea is captured by the concept of Markov equivalence class. Two graphs
that have the same independence structure are said to be Markov equivalent. This means that the
independence relations represented by each graph in the equivalence class are identical, even though
the causal relationships they represent are not. Two DAGs are in the same Markov equivalence class
if and only if they have the same skeleton and the same v-structures (Verma and Pearl 1990).
Causal structure learning methodologies have historically been focused on analyzing individual
data sets. Nevertheless, in recent years, there has been a notable shift towards broadening the
traditional approach, driven by the rapid surge in available data sets from both observational and
experimental sources. As a result, there is a growing body of work centered on causal structure
learning over multiple observational or experimental datasets. In the literature on causal structure
learning methods, this problem has been addressed in two main ways. One group of papers focuses
on developing algorithms that combine observational data measuring overlapping variables (Tillman
et al. 2008, Triantafillou et al. 2010, Tillman and Spirtes 2011, Claassen and Heskes 2010). Another
line of research has concentrated on integrating multiple experimental data on identical set of
variables (Cooper and Yoo 2013, Tong and Koller 2001, Mooij et al. 2020, Zhang et al. 2017) and
non-identical/overlapping set of variables (Triantafillou and Tsamardinos 2015, Huang et al. 2020).
In this paper, we contribute to this stream of work by combining short-term experimental data
with long-term observational data over non-identical/overlapping variables to learn the underlying
causal structure. While various methods could potentially be adapted to this setting, we propose
an extension to the PC-algorithm (Spirtes et al. 2000), selected for its widespread recognition and

intuitive nature.

2.2. Identification of Average Treatment Effect using Causal Graphs

The previous section discusses how to discover causal graphs, which are essential for learning pres-
ence or absence of causal relationships among variables. However, understanding the structure of
underlying causal relations is only the first step. Many policy decisions are also interested in quan-
tifying the causal effects of specific interventions. From the joint distribution of two variables, W
and Y, we can derive the conditional probability P(Y | W) using observational data, which tells us
the probability of Y given that W takes on a specific value w, i.e., P(Y | W =w). However, what we
often need for policy decisions is the causal effect of setting W to a specific value w, represented as

P(Y | do(W =w)). This notation distinguishes the intervention do(W =w) from mere observation.
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While we can calculate P(Y | W =w) directly from the joint distribution of W and Y in an observa-
tional data, the challenge lies in determining whether this observational data, combined with the
underlying causal structure, allows us to infer the causal effect P(Y | do(W =w)).

With this notation, given a graph G, the average effect of a binary treatment can be defined as:
76 =E[Y|do(W=1)] - E[Y|do(W =0)].* (1)

Identification of the average treatment effect 7g from observational data is challenging primarily
due to the presence of confounders that can induce spurious correlations between the treatment W
and the outcome Y. For example, let’s consider the causal graph depicted in Figure 2. In this graph,
there are three paths between W and Y: W 5 X] 5 Xo « X5 oY, Wo X, > Y, and W « X5 —
Xg — Y. By Definition 1, the path W — X; — X5 « X3 — Y is blocked as the variable X5 is a collider
and both W —» X4 —» Y and W « X5 — Xg — Y are unblocked as there are no colliders on these
paths. However, only the path W — X4 — Y represents a causal effect of treatment W on outcome
Y. The path W « X5 — Xg — Y, in contrast, reflects confounding. The association observed between
W and Y along this path is not due to a causal mechanism from W to Y, but is a byproduct of their
mutual associations through X5 and Xg. Thus, without controlling for the confounders X5 or Xg, the
observed correlation in the data between W and Y will reflect both the actual causal effect from W
to Y and the spurious correlation introduced by the path via X5 and Xg. To accurately estimate the

average treatment effect 7, it is vital to adjust for these confounders and thereby isolate the causal

JososoN
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Figure 2 A figure to illustrate the back-door criterion.

As demonstrated in the example above, adjusting for relevant covariates is crucial to accurately
estimate causal effects from observational data. This method, known as covariate adjustment, helps
isolate the true causal relationship between the treatment and the outcome by controlling for con-
founders that could otherwise bias the results (Pearl 1995, Shpitser et al. 2010). One of the most
4In the potential outcomes framework, do(W = 1) and do(W =0) correspond to the notation ¥ (1) and ¥ (0), respectively.

Therefore, E[Y|do(W=1)] - E[Y|do(W=0)] =E[Y(1)] - E[Y(0)]. For more details, see Rubin (1974) and Imbens and
Rubin (2015).
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well-known methods for this is Pearl’s back-door adjustment. When estimating the effect of W on
Y, a back-door path is defined as any unblocked path connecting W to Y that begins with an arrow
pointing towards W. Such paths introduce potential confounding by offering a non-causal route for
information flow between W and Y. Pearl (2000) introduced the back-door criterion as a method
for identifying sets of variables that, when conditioned on, can block the backdoor paths and allow
for the estimation of causal effects from observational data. The back-door criterion provides a
graphical test to determine a valid adjustment set to estimate the causal effect from observational
data.

DEFINITION 3. Back-Door Criterion (Pearl 2000).5 Let W,Y and Z be pairwise disjoint sets
of vertices in a DAG G. Z satisfies the back-door criterion relative to W,Y in G if

(i) no node in Z is a descendant of any node in W, and

(ii) for every W € W, the set ZUW \ {W} blocks every back-door path from W to any member of

Yeg.

Theorem 1 Back-Door Criterion (Pearl 2000). If a set of variables Z satisfies the back-door
criterion relative to (W,Y) in a DAG G, then the causal effect of W on Y is identifiable and is

given by the formula
P(Y =yldo(W=w))= > P(Y=y|W=w,Z=2)P(Z=1) (2)
zeZ

where Z s the support of Z.

Corollary 1.1 ATFE with Back-Door Criterion. Let W be a binary treatment variable. If a set
of variables Z satisfies the back-door criterion relative to (W,Y) in a DAG G, then the ATE tg of
W onY is identifiable and is given by the formula

6= Z ZyP(Y:y|W:1,Z:z)P(Z=z)—Z ZyP(Y=yIW=0,Z=Z)P(Z=Z) (3)

VEY z€F YEY z2€eZ

where Y and Z are the supports of Y and Z, respectively.

This corollary demonstrates that if we have access to control variables satisfying the back-door
criterion, we can accurately estimate the average treatment effect. This is achieved by calculating the
expected outcomes conditioned on both the treatment and covariate values, and then weighting these
outcomes by the probability of observing the covariate values. However, the back-door adjustment
criterion is not complete (Pearl 2000). Thus, there are causal graphs where the back-door criterion

5 The definition is adapted from Pearl’s to explicitly consider cases where W and Y are sets of vertices, in accordance
with the set-based analysis framework in Maathuis and Colombo (2015).
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does not identify a valid adjustment set, but adjusting for different covariate sets can still accurately
estimate the causal effect.

There is a vast amount of research focused on finding necessary and sufficient graphical criteria for
the selection of adjustment sets to accurately estimate causal effects. Shpitser et al. (2010) extend
the back-door criterion and provide a necessary and sufficient graphical criterion for adjustment in
DAGs. Other research has focused on constructing adjustment sets that are valid for more general
graph classes, including those with unobserved confounders or structures that represent Markov
equivalence classes (van der Zander et al. 2014, Maathuis and Colombo 2015, Perkovi et al. 2018).
However, these methods are designed for single-sample settings and are not directly applicable when
combining multiple datasets. Our work aligns with a recent stream of research in causal graphical
models that combines multiple datasets collected under heterogeneous conditions, such as different
populations and various sampling methods, with the possibility of sampling biases (Bareinboim and
Pearl 2012, Lee et al. 2020, Jung et al. 2024). However, these studies do not consider the scenario of
short-term experimental data with missing long-term outcomes combined with long-term historical
data. We contribute to this literature by algorithmically selecting surrogates and covariates to derive
a novel closed-form expression for the long-term treatment effect that is guaranteed to be computed

from the available samples.

3. Problem Setup
To begin with, let us consider a setting with two samples: an experimental sample (denoted as E)
and an observational sample (denoted as O). The experimental sample includes Ng observations
and comprises the treatment variable W along with some covariates X. However, it does not include
the primary outcome Y, which is only observed after a significant delay. The observational sample
includes N observations and includes both the primary outcome Y and the covariates X, but it does
not include the treatment variable W. Let VP represent the variables in the experimental sample,
such that VE = {W}UX. Similarly, let VO represent the variables in the observational sample, defined
as VO ={Y} UX. The complete set of variables, encompassing both samples, is stored in V, where
V={W}UXU{Y}. We use indicator D € {E,O} to denote the considered sample °

Our goal is twofold. First, we focus on learning the true underlying graph G* that represents the
causal relations among variables V. Then, we estimate the long-term treatment effect based on the

population from which the experimental sample is drawn:
T =E[Y|D=E,do(W=1)]-E[Y|D=E,do(W=0)].

61n this paper, we focus on a binary treatment variable W and discrete outcome Y, with X representing a set of
discrete variables. However, our results can be extended to the continuous setting.
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The main challenge in learning the underlying graph and estimating the treatment effect 7* stems
from the absence of the long-term outcome Y in the experimental sample. To address this issue,
we complement the experimental sample with the observational sample. First, we propose a causal
structure learning algorithm that is tailored for this two-sample setting to learn the underlying
causal structure that governs the relations among variables in V. This enables the identification of
surrogate variables that mediate the treatment’s impact on long-term outcomes. Second, we develop
an identification strategy for the average long-term treatment effect using the discovered graph and

surrogate variables.

3.1. Assumptions to Combine Experimental and Observational Data
In this section, we present the assumptions on the structures of the underlying graph, experimental
data and observational data.

The first assumption formally states that we consider a standard randomized experiment, with

subjects being randomly assigned to treatment and control groups.

ASSUMPTION 4. (Randomized Treatment Assignment). The treatment W is randomly
assigned, implying that the true underlying graph G* does not include any incoming edges to the

treatment node W.

This assumption ensures that any observed differences in outcomes can be attributed to the treat-
ment itself, rather than to underlying differences among the subjects. The graphical representation
of the treatment node W without any incoming edges represents the absence of direct influences or
confounding factors affecting the treatment variable. Additionally, this assumption implies strong
ignorability or unconfoundedness in the potential outcomes framework.

Since our experimental sample lacks long-term outcomes, we introduce an assumption on the
true causal structure over variables V to be able to estimate long-term treatment effect using an

observational sample:

ASSUMPTION 5. (Structure of Causal Graph). Let graph G* be the true causal structure over
the variables V in the experimental sample. We assume that
(i) G* does not include a direct edge between treatment W and the long-term outcome Y,

(i1) G* does not include any outgoing edges from the long-term outcome Y to any other variable

m V.

Assumption 5(i) states that there is no direct edge between the treatment and the long-term
outcome in the true causal structure over variables V. Instead, the effect of the treatment is mediated
entirely through the set of covariates X, signifying that any influence the treatment has on the

outcome must pass through these intermediate variables. Assumption 5(ii) states that Y is not a
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cause of any other variables in V. We believe this assumption is not overly restrictive as we are
considering a setting where Y is observed after a long delay. Given that Y is observed later, it is
unlikely that it has any causal effect on variables observed prior to it.

Finally, we introduce a standard assumption required for inferring long-term treatment effects by

integrating short-term experimental data with observational data.

ASSUMPTION 6. (Comparability of Samples). For any subset of variables CC V\{W,Y}, the
conditional distribution of Y given C remains the same across both observational and experimental

samples:
P(Y=y|D=E,C=¢)=P(Y=y|D=0,C=c¢), Vye¥,cc€,CCV\{W,Y},

where Y is the support of Y and € is the support of C.

This assumption ensures that, after controlling for a subset of variables C, the conditional distri-
bution of the long-term outcome Y remains consistent across both experimental and observational
samples. Comparability of samples is a standard assumption in the surrogacy literature (Athey et al.
2019, Imbens et al. 2022, Yang et al. 2023, Huang et al. 2023). Similar assumptions regarding the use
of causal estimates from one population to infer effects in another based on pre-treatment variable
distributions have been utilized in prior research (Hotz et al. 2005, Hernan and VanderWeele 2011,
Pearl and Bareinboim 2014). It should be noted that while this assumption is presented in its most
restrictive form here, it can be relaxed somewhat after identifying the appropriate surrogates and

control variables in §5.

4. Causal Structure Learning with Experimental and Observational Data

In this section, we introduce the COMB-PC algorithm, a causal structure learning algorithm that
combines experimental sample E with observational sample O to learn the underlying causal rela-
tions among variables V. We begin by defining the possible conditioning sets for the pairs of variables
in both experimental and observational samples. For variables V;,V; € VE we store all possible
conditioning sets in C‘E/[Vj ={C|CcVE\{V, V;}}. Similarly, for variables V;,V; € VO, we store all
possible conditioning sets in C%Vj ={C|CcVO\{V, Vil}.

In the first phase of the COMB-PC algorithm, we focus on identifying the skeleton of the causal
graph. A skeleton is an undirected graph that represents potential causal relations among variables
without specifying their directionality. This phase begins with the initialization of a complete undi-
rected graph Gi = (V,U) where U consists of all possible undirected edges between variables in 'V
except the edge between the treatment W and the outcome Y. We intentionally exclude the edge

between the treatment variable W and the long-term outcome Y as established in Assumption 5 ().
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Algorithm 1: COMB-PC - Phase 1 (Skeleton Discovery)
Input: C7 ,, VV;.V; € VE.CP |, WV;.V; € VO
Output: G; = (V,U),N(V;) for V; e V.
Initialization: U={(V,—V,) | V V;,V; e VE} U {(V,\—Y) | V V; € VO},
N(W)=V\{W. Y} N (V) =V\{V;}, V; e VEA{W}, N(Y) =V \{W. Y},
SepSety,y, =0, VV;,V; e VE, £=0.
1. Experimental sample:
for a pair V;,V; € VE where V; € N(V;):
for Ce C{E,_V, where |C|=¢:
L
Update SepSety,y; < SepSety,y; U{C} and U U\ {(Vi=V;)}.
Update N (Vi) — N (V) \ {V;} and N (V) — N(V))\ {Vi}.
Break.
2. Long-term outcome integration:
for V; e VO \ Y where V; e N(Y):
for Ce C‘O,l_y with |C|=¢:
if V; L oY |C:
Update U U\ {(V;(=))}, N(Y) = N(¥)\{Vi} and N(V;) < N (Vi) \{Y}.
Break.

3.if €< |V|-3:
Update £=¢+1. Go to Step 1.
4. Return G1 = (V,U), N(V;) ¥V; e VEN(Y), SepSety,y, VV;,V; € VE.

This way we can ensure that W does not have a direct causal impact on Y, instead, the effect of
W on Y is mediated through other variables. Note that V; 1L gV; | C and V; 1L oV, | C denote the
probabilistic independence of V; and V; with respect to the conditioning set C in the experimental
(E) and observational (O) samples, respectively. For every pair of variables V;,V; € VE, we check if
V; and V; are independent given a specific conditioning set C € C“E,l_ v, If a conditioning set makes V;
and V; independent, we remove the undirected edge between V; and V; from the graph G = (V,U).

We then test the independence of Y and each V; for all V; in Vo \Y. If V; and Y are found to

o

viy> e then remove the undirected edge

be independent given a particular conditioning set C € C
between V; and Y from the graph G; = (V,U).

The second phase of the COMB-PC algorithm focuses on orienting the undirected edges within
the skeleton returned in the first phase. The inputs for this phase are the skeleton with undirected
edges, i.e., G1 = (V,U), the neighborhood sets for each variable, i.e., N(V;) for each V; € V, and the
separation set SepSety,y; for each pair V;,V; € VE . which stores the conditioning sets that found to
make V; and V; independent in the previous phase. We proceed by examining conditional indepen-
dence relations between variable triplets V;,V;, Vi € VE such that V;# W is a neighbor of V; and V,
but V; is not a neighbor of Vi. By Definitions 1 and 2, if V; and V; are probabilistically dependent
with respect to conditioning set C={V;}, i.e., V; & SepSety,y, , then V; must be a collider between V;

and V. Hence, we orient the edge V;—V; as V; — V; and the V;—Vj as V; « Vi.. Additionally, for each
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Algorithm 2: COMB-PC - Phase 2 (Edge Orientation)

Input: G = (V,U),N(V;) ¥V; € VE_N(Y), SepSety,y, VV;,V; € VE.
Output: G.
Initialization: M =U, Gs = (V,M).
1. Experimental sample:
for V;,V;, Vi € VE where V; € N(V;),V; € N (Vi) and V; ¢ N (V):
if V; ¢ SepSety,y, and V; # W:
Update M — (MU{(V; = V). (V; = VO}) \{(VimV)). (V,—Vi)}.
Treatment randomization:
for V; e VE where V; e N(W):
Update M« (MU {(W — Vi)}) \ {(W—V)}.
2. Long-term outcome integration:
for V; € VO where V; e N(Y):
Update M « (MU {(V; = Y)}) \ {(Vi—Y)}.
3. Meek rules:
(R]_) for V;, Vj, Vi € V where V; ¢ N(Vk) and {(Vl - Vj), (V]—Vk)} cM:
Update M « (MU {(V; = Vi)}) \ {(V;—Vi)}.
(R2) for V;,V;, Vi € V where {(V; = V;),(V; = Vi), (Vi—Vi)} € M:
Update M «— (MU {(V; = Vi)}) \ {(Vi—Vi)}.
(R3) for V;,V;,Vi,Vi € V where V; ¢ N(V)) & {(Vi=V}), (V; = Vi), (Vi=V1), (Vi = Vi), (Vi—Vi)} € M:
Update M — (MU{(V; = Vi) }) \ {(Vi—Vi)}.
(R4) for Vi,Vi,Vi,Vi € V where V; ¢ N (Vi) & {(V; — Vj), (Vj - Vi), (Vi—Vp), (Vi—Vi), (Vj—Vl)} cM:
Update M «— (MU ({V; = Vi) }) \ {(Vi—Vi)}.
4. Identify all DAGs within the Markov equivalence class characterized by Gs = (V,M)
and store them in G.
5. Return G.

variable V; in the experimental sample that is a neighbor of the treatment variable W, the edge W—V;
is oriented as W — V;. This specific orientation is based on the randomized treatment assignment
stated in Assumption 4, which implies that there are no incoming edges to the treatment variable
W (Pearl 2000). In the long-term outcome integration step, for each variable V; that is found to be
a neighbor of the long-term outcome Y in the observational sample, the edge V;—Y is oriented as
V; — Y. This orientation is based on Assumption 5(ii) that the long-term outcome Y does not affect
the covariates X. The algorithm then employs Meek’s rules for additional edge orientation, ensuring
a consistent and acyclic graph structure over the variables. These rules are illustrated in Appendix A
(Meek 1995). Note that G2 = (V,M) can include mixed edges, i.e., both directed and undirected
edges, and represents a Markov equivalence class. In Go = (V,M), directed edges represent causal
directions that the algorithm successfully identified whereas the undirected edges represent causal
relations where directionality is not conclusively identified, allowing for different DAGs within the
same Markov equivalence class to include edges with different directions while remaining consistent
with the observed independencies. In the last step of phase 2, we identify all DAGs that are in the
equivalence class represented by Gs = (V,M) and store them in G. Figure 3 illustrates the phases
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of the COMB-PC algorithm. Note that the true causal graph is uniquely identified in this example;

however, unique identification is not always guaranteed as it was mentioned above.

True Graph COMB-PC Phase 1 COMB-PC Phase 2
6 Experimental Sample: Long-term Outcome Experimental Sample: Long-term Outcome
Integration: Integration:
o ° Independencies: W I X;. Independencies: Y AL, X, |X;. | Dependencies: W W X,|X,. OrientX; —Yas X; - Y.
Remove W —X,. Remove X,—Y. Orient W — X; as W — X,
@ and X; — X, as X; < X,.

Complete undirected graph
without the edge W — Y

Figure 3 lllustration of how the COMB-PC algorithm works.

We assume that we have access to the results of all possible independence tests over a given set

of variables and that the test results correctly describe an underlying ground truth DAG G*:

AssuMPTION 7 (Complete oracle). Let G* be the true data-generating graph. For all V;,V; €
VE and C e C‘h;ivj, Vi L gV | C if and only if V; and V; are d-seperated with respect to C in graph G*.
Furthermore, For all Vi e VO\Y and C e ng, Vi L oY | C if and only if V; and Y are d-seperated
with respect to C in graph G*.

We can now state the main result of this section.

Theorem 2 Let G* be the true underlying DAG and G store the set of DAGs returned by the
COMB-PC algorithm. Under Assumptions 1-7, we have G* € G and G* is Markov equivalent to any
graph G € G.

Theorem 2 confirms the asymptotic correctness of the COMB-PC algorithm under appropriate
assumptions. Assumption 7 allows us to separate the discovery task, handled by the COMB-PC
algorithm, from the statistical inference of the conditional independence tests. The assumption
also describes the (conditional) independence/dependence relations that would be obtained in the
large-sample limit, which we use to prove the asymptotic correctness of our algorithm.

The COMB-PC algorithm, in both its skeleton discovery and edge orientation phases, closely

mirrors the traditional PC algorithm (Spirtes et al. 2000), but with some modifications to combine
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experimental and observational samples. In the skeleton discovery phase, similar to the traditional
PC algorithm, the COMB-PC algorithm begins with an almost complete undirected graph and
iteratively refines it by testing for conditional independence and removing edges accordingly. A
key difference in the initial setup is the intentional exclusion of an edge between the treatment
variable W and the outcome Y in the initial graph. This decision is pivotal in ensuring the validity
of the surrogacy setting, where the causal effect of W on Y is mediated through other variables.
Furthermore, since the treatment W and the long-term outcome Y are not jointly observed in either
sample, we cannot directly test for independence between these variables. Therefore, excluding the
edge between the treatment variable W and the outcome Y in the initial graph naturally aligns with
this data limitation. Also, we ensure that the conditioning sets, Cf}ji v, for experimental samples and
C\O/ivj for observational samples, do not include both the treatment variable W and the outcome Y
together, in line with the sample restrictions. Lastly, the COMB-PC algorithm diverges from the
traditional PC method by orienting edges to account for the specific setting we consider where the
treatment is randomized and the outcome is observed after a long delay. While the ingredients of the
COMB-PC algorithm are not entirely new, its added value lies in extending the PC algorithm, which
is the most commonly used causal structure learning algorithm, to address the unique challenges
of the two-sample surrogacy framework we study. This extension effectively bridges two previously
distinct yet fundamentally connected research areas.

We thus far established a framework to learn causal graphs that are consistent with the true
underlying causal relations, using short-term experimental data and long-term historical data. Next,

we propose a novel framework to estimate the long-term treatment effect by leveraging these graphs.

5. Long-term Treatment Effect Identification with Surrogates

In this section, we develop a long-term treatment effect identification strategy using the graphs
in G returned by the COMB-PC algorithm. Our strategy is based on the algorithmic selection of
valid surrogates and backdoor control variables for each graph G € G (refer to §2.2 for details on
backdoor control variables). At a high level, our identification strategy extends Pearl’s backdoor
criterion to address the unique challenges of the two-sample framework we study. While the long-
term treatment effect is always identifiable within the two-sample framework under the previously
discussed assumptions in §3.1, the method of identification may vary depending on the graph.
However, the proposed algorithms for selecting surrogates and backdoor covariates ensure a complete
identification strategy for all graphs suitable to the surrogacy setting, unlike the backdoor criterion,
which may fail to identify causal effects in some graphs (Pearl 2000).

We start by formally defining a valid set of surrogates.
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DEFINITION 4 (SURROGATE VARIABLES). A set S C V\{W,Y} is a valid surrogate set for the
effect of treatment W on the long-term outcome Y in a DAG G if (1) S blocks all directed paths
from W to Y in G and (2) each S €S lies on a directed path from W to Y in G.

Given a graph G, a valid set of surrogates can be identified by examining all directed paths in the
graph. Figure 4 illustrates this definition. In the DAG depicted in Figure 4, there are two directed
paths fromWtoY: W — X3 —» X4 —» Y and W — X5 — X4, — Y. By Definition 4, several combinations
of variables could serve as valid sets of surrogates. For example, the sets {X3, X5}, {X3, X4}, and
{X4} are all valid. Each of these sets blocks all directed paths from W to Y and the graph includes
a directed path from W to Y through the variables in these sets. However, the set {X3} is not valid
because it does not block the path that goes via X5 and Xy. Similarly, {X1, X4} is also invalid, as it
includes X, which is not on any directed path from W to Y.

& & @\@
\@/

Figure 4 A figure to illustrate the surrogate definition.

The following proposition characterizes the effect of W on a set of surrogates within the experi-

mental sample over a graph G.

PROPOSITION 1. Suppose Assumption 4 holds. Let Sg be a valid surrogate set for graph G, as
defined in Definition 4. Then the causal effect of W on the surrogate set Sg over graph G within the

experimental sample is given by
P(Sg=sg|D=E,do(W=w))=P(Sg=sg|D=E,W=w). (4)

Proposition 1 indicates that in the experimental sample, the interventional distribution P(Sg =
s|D =E,do(W =w)) is equivalent to the observed distribution P(Sg =s|D = E,W =w). The under-
lying intuition of Proposition 1 arises from the randomization of the treatment W, as stated in
Assumption 4. The randomization ensures that the treatment is independent of any confounders,
allowing for the direct estimation of its causal effect on the set of surrogates Sg. Although it is
relatively straightforward to identify the effect of treatment on surrogates within the experimen-

tal sample, identifying the treatment effect on long-term outcome Y is more challenging as the
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experimental sample lacks observations of these long-term outcomes, which are only present in the
historical sample.

To tackle the challenge of inferring causality from observational data, which may be confounded,
we combine the use of surrogates with Pearl’s backdoor adjustment. We propose two algorithms that
construct a valid set of surrogates and backdoor adjustments to identify the long-term treatment
impact. Let D‘%Y store the directed paths from W and Y in graph G and ¢ (p) represent the second
to last node on path p. For a graph G, Algorithm 3 constructs a valid set of surrogates. To construct

a valid set of surrogates, the algorithm examines each directed path from the treatment variable

g

W to the outcome Y within the graph G. For every directed path p € Dy,

the algorithm selects
the second-to-last variable on this path and includes it in the surrogate set Sg. It’s important to
note that while our algorithm identifies a specific set of surrogates, alternative surrogate sets could
also comply with the conditions outlined in Definition 4. Our strategy for surrogate selection is
specifically designed to leverage backdoor control variables that adjust for confounding between
the surrogates and the outcome, enabling us to represent the long-term treatment effect through a
closed-form formula we introduce later in this section.

Using Algorithm 4, we construct an adjustment set that effectively blocks backdoor paths to

identify the effects of the surrogates in Sg on the long-term outcome Y using observational data. Let

Bsgy store the backdoor paths relative to S € Sg and Y in G. Algorithm 4 systematically examines

G

each surrogate variable S € Sg and all backdoor paths in Bgy. For each backdoor path p’ € B¢,

the algorithm identifies the second-to-last variable on this path and includes it into the backdoor
adjustment set Zg if noncolliders(p’) do not intersect with the surrogate set S € Sg. Proposition 2
below proves that the set Zg identified by Algorithm 4 satisfies the backdoor criterion, provided
in Definition 3, relative to (Sg,Y) in graph G, thereby controls for observed confounders when

estimating the causal effect of the surrogates Sg on the outcome Y.

Algorithm 3: Surrogate Selection

Input: Q,Dg,y.
Output: Sg.
Initialization: Sg =0.
1. for p e D%Y:

Sg «SgUy(p).
2. Return Sg.

PROPOSITION 2. Let G be a graph that satisfies Assumptions 3, 4, and 5. Let Sg and Zg be the
sets of variables constructed in Algorithms 3 and 4 over the graph G, respectively. Then Zg satisfies
the backdoor criterion provided in Definition 3 relative to (Sg,Y) in the graph G.
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Algorithm 4: Backdoor Adjustment Selection

Input: Q,SQ,BSQY for all S€8Sg.
Output: Zg.

Initialization: Zg =0.

1. for S€8g:

for p’ e BgY:
if noncolliders(p’) N (Sg\ S) =0:
g —Zguy(p’).
2. Return Zg.

Let Sg and Zg be the surrogate and backdoor adjustment sets, constructed by Algorithms 3 and
4 for a graph G. We next establish the long-term treatment effect identification strategy using Sg
and Zg.

PROPOSITION 3. (Surrogate Adjustment). Suppose Assumptions 3, 4, 5, and 6 hold. Then,

the causal effect of treatment W on the long-term outcome Y for any graph G is given by

P(Y=y|D=E,do(W=w)= )  P(Y=y|D=0,Lg=16,8¢=5)
2G€Zg,56€Sg
XP(SQ=SQ|D=E,W=W,ZQ=ZQ) (5)

XP(ZQZZng:E),
where the surrogates Sg and the backdoor adjustment set Zg are obtained via Algorithms 3 and 4

for the graph G. Furthermore, Sg and Zg are the supports of Sg and Zg, respectively.

The proposition states that, under the established assumptions, we can identify the causal effect
of treatment W on the long-term outcome Y in a closed form using a two-sample framework consist-
ing of both experimental and observational data. Despite Y being unobserved in the experimental
sample, the method reformulates the interventional distribution P(Y =y | D = E,do(W =w)) using
observational distributions that can be estimated directly from either the experimental or observa-
tional samples. This proposition also shows that the proposed algorithms for selecting surrogates
and backdoor covariates provide a complete identification strategy for all graphs suitable for the
surrogacy setting, unlike the backdoor criterion, which may fail to identify causal effects in some
graphs (Pearl 2000).

Let 7g represent the average treatment effect over graph G, where 7g =} cq ¥ X (PY=y|D=
E,do(W=1))-P(Y =y|D=E,do(W=0))). If we had access to the true underlying graph G*,
we could use Proposition 3 to compute the true average treatment effect. However, since the true
underlying graph G* is unknown, we rely on the graphs returned by the COMB-PC algorithm. Our
next result demonstrates that we can recover the true average treatment effect 7g+ using the graphs

generated by the COMB-PC algorithm.
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Theorem 3 (Average Treatment Effect Consistency). Suppose Assumptions 1 —7 hold. Let
G consist of the graphs returned by the COMB-PC algorithm. Then, we have tg- € {tg | G € G},

where Tg+ is the average treatment effect over true underlying graph G*.

Theorem 3 establishes the accuracy of the proposed causal discovery and treatment effect identi-
fication frameworks under the appropriate assumptions. Note that Assumption (7) plays an impor-
tant role here by ensuring that the graphs returned by the COMB-PC algorithm are within the
Markov-equivalence class of the true graph. The next section demonstrates the accuracy of both
the discovered graphs and the long-term treatment effect estimates without the oracle assumption,

using synthetically generated data.

6. Numerical Experiments with Synthetic Data

In this section, we evaluate the performance of COMB-PC algorithm and the proposed treatment
effect identification strategy using synthetic data. We consider four distinct scenarios varying the
edge inclusion probability p. The edge inclusion probability p is the fixed probability with which
each potential edge between any pair of nodes in a graph is included, thereby determining the overall
density of the graph. We use the following probabilities in our study: 0.2, 0.3, 0.4, and 0.5. In each of
these scenarios, we generate 200 DAGs, with the number of nodes varying from 10 to 15. We ensure
that the generated DAGs satisfy the Assumptions 4 and 5. These DAGs are parameterized as linear
Gaussian models and we simulate experimental and observational samples with 50,000 observations.
Then, we conduct conditional independence tests using partial correlations, applying a significance
threshold of alpha = 0.05, adjusted with a Bonferroni correction to account for multiple hypothesis
testing. We use the pcalg package (Markus Kalisch et al. 2012) for both generation of DAGs and
samples as well as for conducting conditional independence tests.

Table 1 assesses the performance of the COMB-PC algorithm at various edge inclusion probabil-
ities. The MEC column shows the average number of graphs within the Markov equivalence class
for each density scenario. As the edge inclusion probability increases from 0.2 to 0.5, the number
of graphs within the same Markov equivalence class decreases. As the edge inclusion probability
increases, paralleling the decrease in the number of graphs within the Markov equivalence class,
we also observe a corresponding reduction in the number of undirected edges. Next, we calculate
the average true positive rate (TPR), false positive rate (FPR), true negative rate (TNR), and
false negative rate (FNR) for the graphs returned by the COMB-PC algorithm. The true positive
rate (TPR), which indicates the algorithm’s accuracy in correctly identifying true causal directions,
shows a decreasing pattern, dropping from 0.858 at a density of 0.2 to 0.601 at a density of 0.5.
This decline suggests a reduced accuracy in identifying causal relationships in denser graphs. Con-

versely, the false positive rate (FPR) increases with graph density, rising from 0.005 to 0.033, which
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points to a higher rate of incorrectly identified causal directions in denser networks. Complementing
these trends, the true negative rate (TNR) slightly decreases, and the false negative rate (FNR)

significantly increases with higher densities.

Table 1 Evaluating COMB-PC Algorithm’s Performance Across Different Edge Densities.

Oriented Edges

Edge inclusion probability MEC  Unoriented Edges
PR FPR TNR FNR

p=0.2 3.445 1.565 0.858 0.005 0.995 0.142
p=0.3 3.260 1.255 0.813 0.01 0.99 0.187
p=0.4 2.015 0.82 0.786 0.019 0.981 0.214
p=0.5 1.405 0.37 0.601 0.033 0.967 0.399

Having established the accuracy of the COMB-PC algorithm for identifying causal relationships,
we next evaluate our proposed treatment effect identification strategy. We begin by calculating the
true average treatment effect 7g- for each true underlying graph G* by considering all directed paths
from the treatment to the outcome and multiplying the true edge coefficients along these paths.
We then empirically estimate the treatment effect tg using short-term experimental and long-term
observational data. To do this, we employ Algorithms 3 and 4 to identify relevant surrogate and
backdoor adjustment sets over the graphs returned by the COMB-PC algorithm. Table 2 summarizes
the estimation errors, expressed as (7t —7%) /7", assessing the deviation of the estimated effects from
the true effects across 200 simulations for varying graph densities. The results reveal that estimation
errors are minimal in sparser graphs, with a mean error of 0.048 at p = 0.2. As graph density
increases, mean errors rise, reaching 0.205 at p = 0.5. This trend underscores the crucial role of
precise causal graph identification, as the diminishing accuracy in causal structure learning within

denser graphs significantly compromises the reliability of treatment effect estimations.

Table 2 Average Treatment Effect Estimation Errors Across Varying Graph Densities.
min ~ 25% mean 50% T75% max

p=0.2 -0.186 -0.009 0.048 0.001 0.011 1.113
p=0.3 -0.524 -0.004 0.125 0.006 0.113 1.0
p=04 -0.166 -0.005 0.126 0.002 0.115 1.065
p=0.5 -0.233 -0.009 0.205 0.020 0.321 1.021

7. Case Study: Healthy Grocery Shopping
This section presents a case study demonstrating the applicability of our proposed framework for

predicting the long-term effects of public policies. It also highlights empirical findings that showcase
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how short-term healthy product subsidies can effectively enhance long-term healthy food consump-
tion for specific subsets of users. Many policies employ short-term incentives to shape long-term
behaviors. It is crucial to assess whether the costs of these programs are offset by their long-term
benefits. We illustrate how our framework enables policymakers to predict these effects in advance
and adjust strategies if they are found not to achieve the intended outcomes. We apply our frame-
work to the U.S. Special Supplemental Nutrition Program for Women, Infants, and Children (WIC),
focusing on the program’s reform that introduced vouchers for healthier food options. Then, we
also demonstrate that targeting specific population segments with healthy product subsidies, par-
ticularly those with historically low consumption, can lead to lasting positive outcomes. Notably,
younger consumers in urban areas are more likely to sustain healthier eating habits even after the
subsidies expire.

The remainder of this section is organized as follows. Section §7.1 provides an overview of the
data used in the study and describes the experimental setting. Section §7.2 provides evidence
regarding the persistent effects of the subsidies using raw data, while Section §7.3 estimates the
long-term treatment effect using “future data”, in which the long-term outcome is observed, through
the difference-in-difference method. In Section §7.4, we strategically overlook the “future data” and
predict the long-term treatment effect using the proposed strategies combining a short-term sample

with a historical sample. Finally, Section §7.5 provides our novel empirical findings.

7.1. Data Description and Experimental Setup
The WIC is a federal assistance program in the United States that provides nutrition and health
support to low-income pregnant women, new mothers, and young children up to age of five. In 2016,
about 8 million people participated in WIC each month, which made up 6% of all spending on food
and nutrition assistance in the US. WIC plays an important role in supporting the nutritional needs
of low-income families and helping to reduce the risk of low birth weight, promote child growth,
and encourage healthy eating habits. In 2009, the WIC program made big changes to the foods it
provides. The goal was to make the WIC food packages match the latest dietary recommendations.
WIC was originally established to help low-income families avoid malnutrition, but some people
were worried that it might be contributing to childhood obesity. The 2009 reform added new food
options, like whole-grain products, fruits, and vegetables (e.g., whole-wheat bread). Among these,
100% whole-wheat bread was a significant addition, with post-reform vouchers restricted to this
product.

Specifically, in this study, we focus on the consumption of 100% whole-wheat bread, as it was one
of the most targeted product categories by the reform (Hinnosaar 2023). To this end, we analyze

the impact of the reform on the total quantity of whole-wheat bread purchases aggregating across
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brands, package sizes, and other product characteristics. We use data from the NielsenI() Consumer
Panel” to track consumer purchases. The data is representative of the U.S. population and it covers
14 years, from 2006 to 2019. The households in the study were asked to scan all the groceries they
bought for personal consumption at home. The data collected includes the UPC code, quantity,
and price of each item purchased, as well as demographic information about the households. Most
importantly for our purposes, the dataset has provided yearly information on households’ self-
reported WIC status since 2006. In preparing the data for this study, we followed a preprocessing
approach similar to that described in the paper by Hinnosaar (2023), to which we direct the reader

for detailed information on the data and the descriptive statistics.

7.1.1. Experimental Setup. In our experimental setup, we assume the ability to only access
customer consumption data for the first year post-treatment (i.e., we observe customers purchases
within the first year after they stops receiving subsidies for healthy products), aiming to predict their
consumption in the following second and third years post-treatment. To this end, we intentionally
ignore the data from the second and third years post-treatment, focusing instead on the short-
term impact of this reform observed in the first year post-treatment to estimate the effects of
these subsidies on healthy product consumption in later years. Recall that our framework relies
on leveraging both short-term experimental data and observational data when making long-term
predictions of the effect of the reform (i.e., treatment intervention). The crucial aspect of our long-
term treatment prediction framework is identifying short-term surrogate variables that mediate the
treatment effect on long-term healthy product consumption and are observed in both short-term
experimental data and long-term historical data. With that in mind, we next explain the main logic
behind identifying candidates for these surrogate variables and how they can be used to link short-
term experimental data with long-term historical data based on our particular context of subsidizing
healthy product consumption.

The primary effect of the WIC reform on the consumption of healthy bread is driven by the mon-
etary stimulus, which essentially means that customers participating in the WIC program receive
price discounts when purchasing healthy food. Hence, we believe that the impact of subsidies from
the WIC reform for healthy products manifests through increased discount-seeking behavior after
the consumers stop receiving the WIC stimulus. Therefore, variables such as the frequency of healthy
bread purchases with deals and the frequency of healthy bread purchases with coupons can be con-
sidered as ‘potential’ surrogates that are observable in the historical data. Furthermore, we believe

this setting is suitable for the surrogacy framework, as the monetary stimulus from the WIC reform

7The dataset is sourced from Nielsen Consumer LLC and marketing databases accessible through the NielsenIQ
Datasets at the Kilts Center for Marketing Data at The University of Chicago Booth School of Business
https://www.chicagobooth.edu/research /kilts /datasets/nielsenIQ-nielsen.
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is likely to affect long-term consumption of healthy bread by first impacting short-term consumption
patterns. This change is expected to occur in the quarters immediately following the termination
of the intervention. As a result, variables such as the proportion of healthy bread purchases made
with or without discounts in the quarters after the intervention could serve as potential mediators
in our analyses.

Table 3 presents the short-term variables we used in our empirical analysis. In the third column of
this table, we specify the set of variables that are observed one year after the treatment intervention
ends. Most of those variables are aggregated at a customer-level: (a) Fraction healthy bread Q; is the
fraction of healthy bread in the overall bread purchases over a quarter i of the first year after the
subsidizing period ends; (b) Average number healthy bread deals Q; is the number of times when the
purchased healthy bread was under promotion over a quarter i of the first year after the subsidizing
period ends; (c) Average value healthy bread coupon Q; is the average value of the coupon that was
applied to healthy bread purchased over a quarter i of the first year after the subsidizing period
ends; (d) Healthy bread price Q; is the average price of a healthy bread purchased over a quarter i of
the first year after the subsidizing period ends; (e) Fraction healthy bread is the fraction of healthy
bread in the overall bread purchases during the subsidizing period; (f) Average number healthy
bread deals is the number of times when the purchased healthy bread was under promotion during
the subsidizing period; (g) Average value healthy bread coupon is the average value of the coupon
that was applied to healthy bread purchased during the subsidizing period; and (h) Healthy bread
price is the average price of a healthy bread purchased during the subsidizing period. Then, we also
have the time-varying household characteristics such as the logarithm of income (i.e., Log household
income), household size, age, education, and indicator variable if less than an 18-year-old kid is part
of a household (i.e., Children below 18) both for the historical and experimental datasets. Finally,
in the last column of Table 3, we have the long-term outcome variable Fraction healthy bread long
term which we want to predict since it is not observed in the short term. More specifically, Fraction
healthy bread long term is the fraction of healthy bread purchases in the second and third years
after the subsidy ends.

To complement the short-term experimental data, we use three years of historical data (2006,
2007, and 2008) on grocery purchases where we have access to the information on products’ promo-
tions, coupons, price, indicator variable if a purchased product is a healthy (or non-healthy) bread
as well as to the time-varying household characteristics such as the income, household size, age,
education, and indicator variable if less than an 18-year-old kid is part of a household. Overall,
the integration of experimental and historical datasets allows us to assess the predictive capacity

of our framework. We then test the predictive capacity of our model by comparing its forecasts
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against the actual consumption data from the second and third years post-treatment—after cus-
tomers finished receiving subsidies for healthy products.® Thus, we use this experimental setting to
empirically validate our framework’s ability to accurately forecast the long-term effects of healthy

product subsidies, leveraging short-term observations as surrogate variables.

Table 3 Description of Our Setup in the Context of the WIC Reform.
Sample Treatment Variables within First Year after Sub- | Long-term Outcome
(Observed) sidy Ends (Observed) (Unobserved)
Average number healthy bread deals,
Average number healthy bread deals Q1-Q4,
Average value healthy bread coupon,
Average value healthy bread coupon Q1-Q4,

WIC vouchers Fraction healthy bread, Fraction healthy bread
Experimental | after the 2009 Fraction healthy bread Q1-Q4, lon tern};
Sample reform Healthy bread price, &

Healthy bread price Q1-Q4,
Household size, Age,
Log household income,
Children below 18, Education

7.2. Model Free Evidence

In this subsection, we present key findings obtained from the raw data (i.e., model-free evidence),
shedding light on the plausible direction of the effect size and setting the stage for a more rigorous
examination through econometric modeling in the next subsection. As Hinnosaar (2023) has already
demonstrated that this reform does not affect the long-term consumption of healthy bread for the
entire population, we focus on consumers with historically low healthy bread purchases.® Specifically,
we focus our analysis on customers within the treatment group who are in the bottom half of
households based on their share of healthy bread in total bread purchases during the pretreatment
period.!% To this end, Figure 5 presents model-free evidence on persistent effects of these subsidies
when we focus only on customers with historically low healthy bread purchases. The figure illustrates
variations in the percentage of healthy bread within the overall bread purchases across distinct
8 Note that our goal is to evaluate the long-term effect of the treatment intervention, which is quantified by the
consumption of the healthy bread during the second and third years post-treatment when only having access to the
consumption of the healthy bread during the first year post-treatment. In other words, we evaluate the proposed

framework’s ability to estimate the long-term effect of the treatment soon after the experiment concludes, without
waiting for many years to estimate this long-term effect.

9 We were also able to confirm in our empirical setup that healthy product subsidies do not have a long-lasting impact
on the entire population. In the interest of space, we omit this analysis and instead refer to the findings of Hinnosaar
(2023).

10 As the goal of this policy is to improve the consumption level of healthy bread, we focus our analysis on customers
with the lowest proportion of healthy bread purchases during the pretreatment period. This group has the least
healthy consumption habits, making it fair and logical to prioritize them for policy intervention testing, especially
since the policy did not achieve its long-term objective when applied to all WIC households according to Hinnosaar
(2023).
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10

Percentage of healthy bread, %

Pretreatment Treatment Posttreatment

Figure 5  Model free evidence. In this figure, we present the percentage of healthy bread for the treated customers
before the treatment, during the treatment, and after the treatment when we only focus on the bottom 50% of
treated customers who had a relatively low percentage of healthy bread in their purchases during the pretreatment

period of time. The brackets represent 99% confidence interval.

periods: the pretreatment period (prior to receiving WIC vouchers for healthy bread purchases),
the treatment period (during the receipt of WIC benefits), and the posttreatment period (any time
after finishing the receipt of WIC vouchers).

Since the households in this sample were selected based on their low consumption of healthy
bread, the average percentage of healthy bread in their purchases is 0.9%, which is much lower
than the average percentage of healthy bread consumed by all households in our study during the
pretreatment period of time (i.e., 10.7%). What is even more interesting is that, for this specific set
of households, the proportion of healthy bread in overall bread purchases in the long term (after
finishing the receipt of WIC vouchers) remains notably higher than the pretreatment level (5.4%
versus 0.9%), presenting a contribution to the results obtained by Hinnosaar (2023) in the same
setting where the authors show that this reform does not change the long-term consumption of the
healthy bread for the overall population. Therefore, this model-free evidence suggests that WIC
reform might be actually effective in changing the household persistence to healthy bread when

focusing on select households who had relatively low consumption of healthy bread.

7.3. Estimating the Long-Term Effect of WIC Reform with “Future Data”

The goal of this section is to analyze the long-term effects of healthy food subsidies on WIC house-
holds using an experimental sample that actually includes the long-term outcome, referred to as
“future data”. As discussed previously, the analysis relies on the 2009 WIC program reform with a
focus on the whole wheat bread consumption. It compares changes in purchases associated with the
start and end of WIC voucher receipt in two distinct household groups: those receiving vouchers
from the old program (control households) and those from the new program (treatment households).

While these two groups of households share similarities, the vouchers they receive differ. First, we
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evaluate the long-term impact of WIC policy reform by employing the following regression model

that leverages the empirical methodology effectively utilized by Hinnosaar (2023).

Yiy =B1WIC;; + B2A fterWICYearsl; + BsAfterWICYears2,3;; + B4Re formedWIC;,
+BsAfterReformedWICYearsl; +BsAfterRe formedWICYears2,3;, + 37A fterWICY eard],

+BsAfterReformedWICY eard], + Xyn+6; +y; + &, (6)

where Y;; is the percentage of healthy bread in overall bread purchases of household i in time period
t, WIC;; is a binary variable and it is equal to 1 if a household i receives WIC vouchers in period
t, AfterWICYearsl;; indicates that household i finished using WIC vouchers when making the
purchases up to one year earlier, A frerWICYears2, 3;; indicates that household i finished using WIC
vouchers when making the purchases two to three years earlier, Re formedWIC;, is an indicator
variable and it is equal to 1 if and only if WIC;; =1 and t corresponds to the time period after
the reform, A fterRe formedWICYearsl;; indicates that household i finished using reformed WIC
vouchers when making the purchases up to one year earlier, AfterReformedWICYears2,3;, is
the estimate of the long-term effect size. Then, X;; is included into the aforementioned regression
specification to capture time-varying household characteristics such as the logarithm of income,
household size, age, education, and indicator variable if less than a 18 years old kid is part of a
household. We also include §; and vy, to capture household and time period fixed effects. Finally,
dummy variables A fterWICYear4], and AfterReformedWICYear4™ indicate whether households
received WIC or reformed WIC vouchers four or more years earlier. As it is standard in the literature
to increase statistical power in this way, we do not drop the observations three or more years after
receiving the vouchers but we do not report the coefficient estimates for these dummy variables
because the balanced panel only includes data up to three years after receiving vouchers (Hinnosaar
2023).

Table 4 displays the results obtained by estimating regression specification (6) based on the
bottom half of households that initially (i.e., during the pretreatment period) purchased the least
amount of healthy bread. The table shows the treatment (i.e., 2009 WIC reform) leads to a 2.63

percentage point increase in the long-term proportion of healthy bread purchases.

7.4. Treatment Effect Prediction using Surrogates without “Future Data”

In this section, we forecast the long-term effect using data from the first year only, as described in
§7.1.1, and compare them with the long-term effect estimated in the previous subsection. Following
our framework, the first step is to obtain the causal graph by using the COMB-PC algorithm

that integrates experimental and observational samples of the data to find the underlying causal
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Table 4  Main analyses. We estimate the long-term effect of treatment (based on years 2 and 3) when we only

Model (1)
Dependent Variable Bread healthy %
Reformed WIC 6.6006***
(1.0893)
After reformed WIC year 1 6.9820***
(1.4287)
After reformed WIC years 2 and 3 2.6359%*
(1.1919)
wWIC 1.0267
(0.7454)
After WIC year 1 1.6887*
(1.0211)
After WIC years 2 and 3 2.8713***
(1.0758)
Controls Yes
Year-quarter fixed effects Yes
Household fixed effects Yes
R? 0.28724
Observations 5,921

focus on the bottom 50% of treated customers who had a relatively low percentage of healthy bread in their purchases

during the pretreatment period of time.
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Causal graph generated using the COMB-PC algorithm.
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relationships. Figure 6 illustrates the graph generated by the COMB-PC algorithm where we have
the set of the variables provided in Table 3. Interestingly, although the COMB-PC algorithm usually
produces a Markov equivalence class, in our case, we obtained a unique graph. Having this graph,
we first apply Algorithm 3 to identify valid surrogate variables. Fraction healthy bread Q2, Fraction
healthy bread Q3, Fraction healthy bread @4, and Healthy bread price ()1 variables are identified
as valid surrogates because every directed path from the Treatment to the long-term outcome
variable (i.e., Fraction healthy bread long term) intersects with at least one of these variables. Next,
Algorithm 4 is used to identify the confounding variables between the aforementioned surrogates and
the long-term outcome variable (i.e., Fraction healthy bread long term). The outcome of Algorithm 4

indicates that controlling for the Age variable is sufficient to address confounding issues.
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Figure 7 The long-term treatment effect estimation results based on 10,000 bootstrapped samples using surrogate

adjustment.

Long-term treatment effect estimates

0

Estimates with "Future Data" Our approach without "Future Data"

Figure 8  Comparison of long-term effect estimations using the standard empirical method based on “future data”
(see the left panel) versus our surrogate variable framework without using “future data” (see the right panel). The bars

represent 95% confidence intervals.

After building the causal graph and identifying surrogate variables as well as backdoor variables,
we estimate the long-term treatment effect by invoking Proposition (3) over 10,000 bootstraped

samples. Figure 7 displays the distribution of long-term treatment effect estimates derived from the
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bootstrapped samples. Furthermore, the right panel of Figure 8 elaborates on our result, indicating
that the treatment is forecasted to result in a 3.55 percentage point increase in the proportion of
healthy bread consumed by customers in our data sample over the long term, with a 95% confidence
interval ranging from 2.07% to 4.98%. Then, the left panel illustrates the results obtained from the
preceding section, where we assume access to the “future data” and estimate that the treatment
leads to a 2.63 percentage point increase in the proportion of healthy bread consumed by customers
in our data sample over the long term, with a 95% confidence interval ranging between 0.3% and
4.9%. The overlapping confidence intervals suggest that one can effectively predict the long-term

treatment effect by leveraging our framework with surrogate variables.

7.4.1. Discussion and Policy Implications. In the previous section, we demonstrated that
our proposed method for identifying surrogate variables using the causal discovery framework per-
forms exceptionally well in practice. By introducing a novel nonparametric end-to-end framework,
we not only uncover surrogates in a data-driven manner, but also leverage these surrogates to esti-
mate the long-term impact of treatment interventions by combining short-term experimental data
with long-term historical data. We believe our method offers valuable insights for decision-makers
by uncovering relationships that may not be readily apparent or that exceed conventional intuition
and expert judgment, thereby facilitating a rigorous, data-driven approach to identifying surrogate
variables that mediate treatment effects. Additionally, this methodology supports proactive policy
adjustments or terminations, thereby minimizing potential significant costs if the anticipated long-
term goals are not achieved. Ultimately, this enables policymakers to efficiently assess both imme-
diate results and forecasted long-term outcomes, facilitating a more streamlined decision-making

process without significant delays.

7.5. Empirical Findings: Heterogenous Treatment Effect

Our empirical findings so far indicate that while subsidies on healthy products do not significantly
affect long-term consumption of healthy bread overall, this policy can be particularly effective for
a specific group of users who have had limited prior exposure to healthy products. This insight
offers critical implications for policymakers seeking to encourage healthier eating habits among
consumers. In this subsection, we delve further into the analysis, exploring the key characteristics
that may influence the long-term effectiveness of such subsidies, aiming to better understand which
factors drive the policy’s success for certain groups over others. This deeper exploration follows a
similar spirit to the analysis in Section § 7.3 and can help refine targeted interventions and optimize
health-focused subsidy programs for lasting impact. To this end, we interact the treatment effect
with two customer-specific attributes: Age!'l, representing the average age of household heads, and
I NielsenIQ dataset categorizes the age of the household head as an integer ranging from 1 to 9. These values

correspond to the following age groups: 1 represents under 25, 2 corresponds to 25-29, 3 to 30-34, 4 to 35-39, 5 to
40-44, 6 to 45-49, 7 to 50-54, 8 to 55-64, and 9 to 65+.
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Density, which represents the population density of the household’s area of a residence based on

zipcode-level'? data. More specifically, we estimate the following regression specification:

Yie =1WIC;; + B2A fterWICYearsl, + BsAfterWICYears2,3;; + B4Re formedWIC;;
+BsAfterReformedWICYearsl; +BsAfterReformedWICYears2,3;; +BrAfterWICY eard],
+BsAfterReformedWICYeard, + BoVar x A fterWICY earsl, + BioVar X AfterWICY ears2,3;,
+B11Var X ReformedWIC;; + B1aVar X AfterRe formedWICY earsl;;

+B13Var x AfterRe formedWICYears2,3;; + Xin +6; +y: + &ir, (7)

where Var is either Age or Density and all the other variables have the same definition as in the
Equation (6). In what follows below, we examine the role of these two customer-specific factors

where Bread healthy % is the dependent variable.

7.5.1. Household’s Age. First of all, note that it is not clear ex-ante whether healthy product
subsidies will have a more lasting effect on older or younger consumers’ long-term purchasing habits,
particularly once the subsidies are removed. On the one hand, older consumers may be more likely
to adopt and sustain healthier purchasing behaviors because they tend to be more focused on long-
term health outcomes. With age, concerns over chronic health conditions such as heart disease and
diabetes become more pressing, potentially incentivizing older individuals to increase the fraction
of healthy products in their diet even after the subsidies end. On the other hand, it is equally
plausible that younger consumers could continue buying healthy products after the subsidies end.
Younger consumers may develop lasting habits and preferences for healthy foods during the subsidy
period. Behavioral economics suggests that repeated exposure to healthier products, especially when
combined with positive reinforcement like savings, could lead to habit formation (Cawley and Ruhm
2011, Roberto and Kawachi 2015). This could drive younger consumers to continue purchasing
healthy items even after the incentive is gone, as their taste preferences or perceptions of value may
shift during the subsidy period. Furthermore, younger consumers may be more adaptable and open
to new food choices, especially if the experience with subsidized healthy products is positive. Over
time, these changes could result in a sustained shift in their buying behavior. As such, it is difficult
to predict in advance which age group is more likely to maintain long-term consumption of healthy
products once subsidies are removed. To examine how the impact of the healthy product subsidies
depends on the age of a household, we estimate the regression specification (7) where our moderator
is Age.

Column (1) of Table 5 presents the regression results, where the interaction term, Age x After

reformed WIC years 2 and 3, is particularly insightful. The negative coefficient suggests that the

12 Zipcode-level density information can be accessed via this link: https://www.fourfront.us/data/datasets, .
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younger the household, the more likely the healthy product stimulation policy impacts the long-term
consumption of healthy products. This might imply that younger households are more responsive to
the policy changes, potentially forming lasting habits due to their adaptability and openness to new
purchasing behaviors. These results indicate that younger households might be quicker to integrate
healthier products into their regular shopping routines, even after the policy incentives phase out.
This could be attributed to habit formation mechanisms (Cawley and Ruhm 2011), where repeated
exposure to subsidized healthy products fosters a sustained preference over time. This finding has
significant policy implications, as it highlights the importance of considering demographic factors
such as age when designing and evaluating the long-term effectiveness of public health interventions
like subsidies for healthy products. Younger households may represent a key target for such policies

due to their potential for lasting behavioral changes.

7.5.2. Population Density. The next customer-level attribute we examine is the population
density of the area of residence of a household. This moderator plays a crucial role in bridging
the findings of this paper with the broader food desert literature (Allcott et al. 2019), where a
central debate revolves around how the availability and variety of healthy food options influence the
nutritional quality of consumers’ diets. This exploration is particularly relevant for policymakers
aiming to address nutritional disparities by increasing healthy food availability in low-access regions.
To this end, column (2) of Table 5 reports the regression results using Bread healthy % as the
dependent variable and includes Density as a moderator. The coefficient for the interaction term,
Density x After reformed WIC years 2 and 3, indicates that households residing in areas with
higher population density experience a greater long-term impact from healthy product subsidies
on their consumption of healthy bread. This suggests that households in densely populated areas
may benefit more from these policies. One potential explanation for this finding is that areas with
higher population density often offer a wider variety of product choices, including healthier options.
With greater accessibility and convenience in purchasing healthy products, consumers in these
areas may find it easier to incorporate them into their regular diets. This increased exposure and
convenience could contribute to stronger habit formation, encouraging sustained consumption of
healthy products even after the healthy product subsidies are removed. Additionally, the competitive
market in densely populated regions might drive retailers to promote healthier choices more actively,

further reinforcing this behavior change among consumers.

7.6. Discussion of the Empirical Findings and Policy Implications
Promoting healthy product choices has become increasingly imperative, with government agencies
recognizing its pivotal role in public health (An 2013, Allcott et al. 2019). To address the rising

concerns surrounding diet-related health problems, government initiatives have been implemented to
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Model (1) (2)
Dependent Variable Bread healthy % Bread healthy %
Age x Reformed WIC -1.1199**
(0.4879)
Age x After reformed WIC year 1 -1.3576*
(0.6982)
Age x After reformed WIC years 2 and 3 -1.0944**
(0.4514)
Age x WIC 0.474
(0.3039)
Age x After WIC year 1 -0.0471
(0.5022)
Age x After WIC years 2 and 8 0.3726
(0.3926)
Density x Reformed WIC 0.0010***
(0.0002)
Density X After reformed WIC year 1 0.0036***
(0.0007)
Density x After reformed WIC years 2 and 3 0.0028***
(0.0008)
Density x WIC -0.0001
(0.0001)
Density x After WIC year 1 -0.0032%**
(0.0007)
Density X After WIC years 2 and 3 -0.0029%**
(0.0008)
Reformed WIC 12.3731%%* 4.7056***
(2.9546) (1.0820)
After reformed WIC year 1 14.2257%%* 3.3932%*
(4.6471) (1.5891)
After reformed WIC years 2 and 3 8. 78R *** -0.2437
(2.9645) (1.3206)
wicC -1.4266 1.9488%***
(1.7958) (0.7370)
After WIC year 1 2.0346 4.8348%**
(3.3045) (1.1900)
After WIC years 2 and 3 0.6649 5.8439***
(2.5276) (1.1921)
Controls Yes Yes
Year-quarter fixed effects Yes Yes
Household fixed effects Yes Yes
R? 0.28972 0.29684
Observations 5,921 5,921

Table 5 Heterogeneous treatment effect analysis. The moderators are the average age of household heads in the

first column and the population density of the household’s area in the second column.

encourage healthier choices through both supply-side and demand-side subsidies. Many researchers
in the public health sector, policymakers, and advocates assert that the existence of food deserts
constitutes a crucial factor contributing to unhealthy eating habits (Shannon 2014). This has led to
governments at both the federal and local levels investing millions of dollars annually in supply-side

policies that provide financial support and assistance to grocery stores operating in underserved
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areas. However, some researchers argue that supply-side strategies, such as promoting the opening
of grocery stores in underserved areas, may not have a significant impact on people’s eating habits
(Allcott et al. 2019). Instead, they suggest an alternative approach: providing subsidies for healthy
foods (e.g., WIC reform). These initiatives aim to change consumer behavior by making healthy
food choices more readily available and less expensive. By providing subsidies for items like whole
wheat bread, governments hope to encourage people to adopt healthier eating habits and reduce the
detrimental effects of unhealthy food consumption on public health. However, as it was mentioned
above, Hinnosaar (2023) shows that even the effect of the demand-side policies (i.e., healthy product
subsidies) is mixed in the long run. Despite extensive evidence in the literature demonstrating the
persistence and challenges of altering nutritional choices (Ma et al. 2013, Atkin 2013, Bryan et al.
2016, Biesbroek et al. 2023), our empirical contribution to this research field reveals that healthy
product subsidies can have a more enduring impact on individuals with historically low health
product purchases, even though these subsidies may not be effective for the entire population as it
was shown in many existing papers.

Given the considerable efforts invested by government agencies to identify the most effective
methods for encouraging healthy eating behaviors among consumers, the findings presented in this
paper can provide valuable insights into which customer segments would benefit most from healthy
product subsidies, ensuring a more enduring and sustainable impact. Therefore, our primary policy
suggestion is to restrict subsidies to individuals with limited prior exposure to healthy products.
This group is an ideal target for this policy due to the following two potential mechanisms. First, the
subsidies for healthy products could have an informational effect. By receiving these subsidies, these
customers may gain knowledge about healthy eating and develop a more positive perception of the
social status associated with making healthier food choices. Second, there is an increased likelihood
that healthy products were never included in the individuals’ consideration sets, preventing them
from evaluating such products (i.e., consideration set expansion effect). Consequently, after trying
them for the first time with the financial incentives offered by the government program, these
customers might discover a preference for these products and subsequently continue to purchase
them consistently in the future. Similarly, we posit that customers who have historically made
substantial purchases of healthy products may only exhibit a short-term response to subsidies for
such products. This is because they are likely already cognizant of the benefits of healthy eating and
have optimized the proportion of healthy products to achieve a balance between health outcomes
and the variety of products they consume. Hence, as shown by Hinnosaar (2023), these customers
increase their consumption during the subsidy period but subsequently decrease their consumption
post-reform, keeping the same average long-term fraction of healthy bread in overall bread purchases.

The latter observation is unsurprising, as it mirrors consumer reactions to price discount promotions.
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It is a well-established phenomenon that consumers tend to amplify brand purchases in the short
term during promotional periods, but the long-term effects are often either nonsignificant or negative
(Mela et al. 1997).

Our analysis reveals that the effectiveness of the food policy is influenced by both the age of con-
sumers and the population density of their residential areas. Specifically, younger consumers tend to
sustain healthier eating habits in the long term, even after the healthy product subsidies are discon-
tinued. This finding implies that while the current policy effectively fosters lasting behavior changes
among younger populations, older consumers may require a different set of interventions, such as
alternative incentives or behavioral nudges, to encourage similar long-term dietary improvements.
These insights underscore the importance of tailoring public health strategies to different demo-
graphic segments, as distinct consumer groups respond differently to short-term policy measures
aimed at promoting healthy food consumption. A ‘one-size-fits-all’ approach may not be as effective
across all age groups, and further exploration into targeted interventions for older populations could
enhance the overall impact of these policies.

Moreover, our results emphasize that policymakers should account for geographic factors, such
as population density, to maximize the policy’s reach and efficiency. In this context, our findings
suggest that the policy is more likely to achieve its long-term objectives when targeted at consumers
residing in areas with higher population density. However, this focus could inadvertently widen
the gap in dietary health between urban and rural areas, potentially exacerbating the existing
disparity seen in some rural regions, commonly referred to as “food deserts”. In the long term, this
could lead to greater inequalities in the consumption of healthy foods, with urban areas benefiting
more from the policy while rural and lower-density regions continue to lag behind. To address
this concern, government policies need to be adapted to ensure that the positive effects of healthy
food subsidies reach all communities equally. This may involve creating tailored interventions for
rural areas, such as improving access to healthy food options through infrastructure investments,
transportation solutions, or alternative subsidy models that address the unique challenges of food
deserts. By implementing more region-specific strategies, policymakers can work toward reducing
the urban-rural divide and achieving a more equitable impact on public health outcomes across

diverse populations.

8. Conclusion, Limitations, and Future Research
In this paper, we develop a framework for estimating long-term treatment effects by integrating
short-term experimental data with long-term historical data. Our study makes several contribu-

tions to the growing body of literature on surrogacy. First, we present the COMB-PC algorithm, an
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innovative causal structure learning algorithm that seamlessly integrates experimental and observa-
tional data to reveal the underlying causal relationships among variables. This algorithm, compris-
ing stages of skeleton discovery and edge orientation, adapts traditional causal structure learning
methods to our specific framework, highlighting its flexibility and applicability. Building on this,
we develop a method to estimate the average long-term treatment effect using surrogate variables,
a novel approach that effectively utilizes surrogate variables and backdoor adjustments to bridge
the gap between short-term data and long-term outcomes. Our numerical experiments validate this
framework, showing its capability to accurately identify causal relationships and estimate treatment
effects across various graph densities. Additionally, a real-world case study empirically confirms
the framework’s effectiveness in forecasting the long-term impact of health product subsidies on
consumer behavior, with our findings suggesting that targeted subsidies could promote sustained
health-conscious shopping among consumers who historically make fewer healthy grocery purchases.
This research not only bridges surrogacy framework with causal discovery but also offers practical
insights for designing health-related policy interventions.

There are numerous potential directions for future research. One particular direction is to extend
the current framework to incorporate confounding factors and non-random treatment assignment
into the estimation framework, to improve causal inference from observational data. Alternatively,
the proposed framework can be extended to predict the “long-term” treatment effect of long-term
interventions instead of predicting the “long-term” treatment effect of short-term interventions.
Another promising direction for future work involves determining the optimal amount of short-
term data required to make accurate long-term predictions. In other words, it would be valuable
to determine the optimal timing at which short-term data becomes sufficient for making long-term
forecasts with our causal structure learning framework.

A promising avenue for future research involves validating the long-term effectiveness of healthy
product subsidies among customers with historically low consumption of healthy products through
randomized control trials (RCTs). Additionally, it would be valuable to explore further the observed
tendency of younger consumers and those in densely populated urban areas to sustain healthier
eating habits over time. By verifying these patterns, we can better understand the factors driving
long-term behavior change. Future studies could also uncover new insights and nuanced factors that
may influence the sustained impact of short-term healthy product subsidies. For instance, different
demographic, socioeconomic, or geographic characteristics might play a role in determining how
effectively these policies foster long-term healthy habits. Understanding these intricate details will
be critical for designing more precise, data-driven interventions aimed at promoting healthy eating

across diverse populations.
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Appendix
A. Meek Rules Illustration

The Meek rules provide a systematic method for orienting undirected edges within a partially
directed acyclic graph to achieve a fully directed acyclic graph without introducing new unshielded
collider or cycles (Meek 1995). Figure 9 demonstrates these rules visually, showcasing how they

apply in different configurations of a graph.
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Figure 9 Meek rules illustrated.

B. Rules of Do-Calculus

Let X,Y,Z, and W be arbitrary disjoint sets of nodes in a causal DAG G and let P be the probability
distribution induced by graph G. According to Theorem 3.4.1 in Pearl (2000), the following rules
apply to any disjoint subsets of variables X,Y,Z, and W:

1. Rule 1 (Insertion/deletion of observations):
P(y|do(x),z,w)=P(y|do(x),w) if (Y LZ]|X, W)gi
2. Rule 2 (Action/observation exchange):
P(y|do(x),do(z),w)=P(y|do(x),z,w) if (Y LZ|X, W)g@.
3. Rule 3 (Insertion/deletion of actions):

P(y|do(x),do(z),w)=P(y|do(x),w) if (Y LZ|X,W)g____.

X, Z(W)

where Gy denotes the graph obtained by deleting all incoming arrows to nodes in X from G, Gx
denotes the graph obtained by deleting all outgoing arrows from nodes in X from G, and Z(W) is

the set of Z-nodes that are not ancestors of any W-nodes in Gx.
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C. Proofs
LEMMA 1. In a directed acyclic graph G = (V,E), if V1 is adjacent to Vo, and Vo is adjacent to
V3, and Vi is not adjacent to Vs, then the edges are oriented as Vi — Vo < V3 if and only for every

subset C of V, Vi is d-connected to Vs given {Vo} U C \ {V1,V3}.

Proof of Lemma 1.The proof follows from Lemma 5.1.2 used in the proof of Theorem 5.1 in

Spirtes et al. (2000).

LEMMA 2. In a directed acyclic graph G = (V,E), if V1 is adjacent to Vo, and Vs is adjacent to
V3, and Vi is not adjacent to V3, then either Vo is in every set of variables that d-separates V1 and

V3, or it is in no set of variables that d-separates V1 and V3.

Proof of Lemma 2.The proof follows from Lemma 5.1.3 used in the proof of Theorem 5.1 in

Spirtes et al. (2000).

LEMMA 3. Two DAGSs are equivalent if and only if they share the same skeleton and same v-

structures.

Proof of Lemma 3. The proof of this lemma can be found in Verma and Pearl (1990).

Proof of Theorem 2. We prove this in two steps. First, we show that a graph G € G returned by
the COMB-PC algorithm shares the same skeleton with the true underlying DAG G*. Second, we
show that the v-structures on any G € G and G* are identical. This approach is taken in light of
Lemma 3, which states that two DAGs are equivalent if and only if they share the same skeleton
and the same unshielded colliders, thus guiding our proof structure towards establishing Markov
equivalence between G € G and G*.

Part 1. We start by noting that all the graphs in G returned by phase 2 of COMB-PC algorithm
have the same skeleton as the undirected graph Gi returned in phase 1. Therefore, it would be
sufficient to show G is identical to the skeleton of the true underlying DAG G*. Let’s select V;,V; €
VE such that V; and V; are not neighbors in Gi. Since V; and V; are not neighbors in G, then
there must exist a conditioning set C* € C"E,i v such that V; 1L gV; | C* due to the construction of
Algorithm 1. Note that Assumptions 1, 2, and 7 ensures that we have V; L gV; | C* reflects the
d-separation relations in the true graph. Hence V; and Vo must be d-separated given C* in G*.
Hence V; and V; cannot be neighbors in G* by Definitions 1 and 2. Now let’s select V;,V; € VE such
that V; and V; are not neighbors in G*. Then there must exists a set C** € Ca,vj that d-separates
Vi and V; in G*. By definition, |C**| < |V| -2 where || gives the size of a set. Since Y can only be
a collider in G* by Assumption 5(ii), we further have |C**| < |V \ {Y}| - 2=|V| - 3. Note that we
assumed we have the perfect conditional independence information, we must have V; & gV; | C*.

The first phase of COMB-PC algorithm iterates until it finds a conditioning set that makes V; and
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V; independent with size less than or equal to |V|—3. Hence it eventually reaches the set C** and
removes the edge V;—V; from U (if the edge V;—V; is not removed earlier). With this, we establish
V; and V; are not neighbors in G, which implies V; and V; are not neighbors in any of the graphs in
G as well. Similarly, we can show Y and V; € V\ X are not neighbors in G; if and only if they are not
neighbors in G*. Finally, let’s consider the pair W and Y. Note that W and Y are not adjacent in G*
by Assumption 5(i) and they are not adjacent in any of the graphs in G as an edge between W and
Y is never included in U. Note that both the experimental and observational samples have the same
distribution by Assumption 6. That’s why the adjacency relations found using the observational
data for Y will be valid in the experimental data as well. With this, we prove that the skeleton of
G1 returned by the first phase of the COMB-PC algorithm is identical to the skeleton of the true
underlying DAG G*, which implies G € G and G* shares the same skeleton.

Part 2. We next show for all G € G, G has the same unshielded colliders with G*. Since G stores
all DAGs within the Markov equivalence class characterized by G2 = (V,M), any graph G € G must

share the same unshielded colliders as G2 by Lemma 3. Step 1. Here we show every unshielded collider

in G, is also in G*. Without loss of generality, let’s select any V;,V;,Vy € V where V;,V;, Vi form
an unshielded collider on graph Gs. Note for any V;,V;,Vi € V where V;,V;, Vi form an unshielded
collider on graph Go, we have V; # W as we make sure there are no incoming edges to W in G» in the
treatment randomization step in phase 2. By definition of an unshielded collider, we have V; and Vi
are not neighbors in G» and (V; — V;) and (V; < Vi) are in Go. Step 1A. Let’s first focus on the case
where Y & {Vi,V;,Vi}, ie., {V;,V;,Vi} € VE. Note that all unshielded colliders over variables VE will
be oriented through the dependence relations only as Meek’s rule are guaranteed to not to create
further unshielded colliders (Meek 1995). Since we have (V; = V;) and (V; < Vi) are in Go, we must
have V; ¢ SepSety,y, by construction of the COMB-PC algorithm, which implies V; A gV | V;. Since
we assumed perfect conditional independence information by Assumption 7, we must have V; and
Vi d-connected with respect to V; in G*. Note that we already established that G2 and G* share the
same skeleton in the previous part of the proof. This implies V; and V; and V; and Vi are adjacent
and V; and Vi are not adjacent in G*. Then by Lemmas 1 and 2, V; — V; < V. must be present in the
true underlying DAG G* forming an unshielded collider. Step 1B. Now we focus on the case where
Y € {V;,V;,Vi}. Note that we make sure there are no outgoing edges from Y in Gs in the long-term
outcome integration step of phase 2 of the COMB-PC Algorithm. Hence for any V;,V;, Vi that form
an unshielded collider on graph Gz such that Y € {V;,V;,Vi}, we must have V; =Y, ie., (V; =Y)
and (Y « V). Since we already established Go and G* share the same skeleton, the skeleton of G*
must include V;—Y and V;—Y. Then by Assumption 5(ii), we must have (V; »Y) and (Y « V}) in
G*. With this, we show V;,V;, Vi form an unshielded collider on the true underlying DAG G*. Note
that Meek rules make sure no new unshielded colliders are introduced (Meek 1995). With this, we



46

prove every unshielded collider in G2 is also in G*. M Here we show every unshielded collider
in G* is also in Go. Without loss of generality, let’s now select Vi, V;, Vi € V where V/, Vs, Vi form
an unshielded collider on graph G*. This means V;; and Vi are not neighbors in G* and we have
(Vi = Vjp) and (Vjr < Vi) in G*. Step 2A. Let’s first focus on the case where Y ¢ {V;,V;,Vi}, ie.,
{Vi,V;,Viy VE. Since we showed G* and G share the same skeleton, we must have V; and Vi
and Vj» and Vi neighbors in graph Go, and V;» and Vi are not neighbors in Gs. Note that we must
have V;» #W by Assumption 4. Note that V;; and V- are d-connected with respect to V;s in graph
G* as Vy — Vi and Vj» « Vi Since we assumed we have access to perfect conditional independence
information, we must have V;» ¢ SepSety,,v,,. Then phase 2 of the COMB-PC algorithm ensures that
we have (Vi — V) and (Vj» « Vi) in Go. With this we show Vi/, Vs, Vi forms an unshielded collider
on Gz. Step 2B. Now we focus on the case where Y € {V;,V;,Vi}. By Assumption 5(i7), we must
have Vi =Y in G*. Note that since we already established G* and G share the same skeleton, V;:
and Vs are also neighbors with Y in Go. Then by the long-term outcome integration step of phase
2 of the COMB-PC algorithm, we must have Vi —Y and Vir — Y in Go. Hence V;,V;,Vy form an
unshielded collider on graph G». With this, we prove every unshielded collider in G* is also in G». O

Proof of Proposition 1. Under Assumption 4, there are no incoming edges to treatment W in
graph G (Pearl 2000). Hence there are no backdoor paths between W and Sg in G and we have
P(Sg=sg|D=E,do(W=w))=P(Sg=sg|D=E,W=w). O

Proof of Proposition 2. We prove Proposition 2 by showing Zg satisfies the backdoor criterion
relative to every variable in Sg and the outcome Y in the G using Definition 3. We will consider
conditions (i) and (i) of Definition 3 separately. Condition (i). We prove this by contradiction.
Suppose there exists a Z € Zg where Z is a descendant of some § € Sg. By construction of Algorithm
3, all § €8 lies on a directed path from W to Y. This implies there exists a directed path from W to
S in the graph G. Since we assumed Z is a descendant of §, there must exist a directed path from W
to Z in G. Note again by construction of Algorithm 3, there must exist a backdoor path p’ between
some S’ € Sg and Y where y(p’) =Z. Hence there must exist an edge between Z and Y in G, i.e.,
Z e N(Y). By Step 3 of Algorithm 2 and Assumption 5, we must have the edge Z —Y in G. So far
we established there must exist a directed path from W to Z and we have the edge Z —Y in G.
Together they imply there must exist a directed path p from W to Y where Z is the second-to-last
element, i.e., y(p) =Z. Then by Step 1 of Algorithm 3, Z must be in Sg. However for a backdoor
path p’ between any S’ € Sg where ¥(p’) =Z, we have Z € noncolliders(p’). Therefore, it follows
that for every backdoor path p’, the set intersection noncolliders(p’) N (Sg \ {S}) is non-empty
because Z is contained within Sg \ {S}. It is therefore impossible for Algorithm 3 to include Z in
Zg. This result contradicts the assumption that Z is in Zg. Condition (i7). Here we show every

backdoor path between any S € Sg and Y is blocked with respect to the set Zg USg \ S. Note that
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the definition of blocked paths is given in Definition 1. Algorithm 4 iterates over all § € Sg and
over all backdoor paths between S and Y. Without loss of generality, let’s fix §* € Sg and p” € Bg:y.
Next,we will show p”” is blocked with respect to the set ZgUSg \ S*. Suppose the if condition in Step
1 of Algorithm 4 doesn’t hold, i.e., noncolliders(p”’) NSg\ S* # 0. Then, p” is blocked with respect
to Zg USg \ S* by Definition 1. Now suppose the if condition in Step 1 of Algorithm 4 holds, i.e.,
noncolliders(p”)NSg\ S*=0. Then Zg includes the second-to-last node on path p” by Algorithm
3. Let Z* be the second-to-last node on path p”, i.e., ¥ (p”)=Z*. This implies that Z* € N(Y) and
by Algorithm 2 and Assumption 5, we have Z* —» Y in G and do not have Z* « Y in G. Hence Z* is
a non-collider on path p”. Then, p” is blocked with respect to ZgUSg \ S* by Definition 1. Hence
we showed Zg satisfies the back-door condition relative to (Sg,Y) in G.

LEMMA 4. Consider a graph G that satisfies Assumptions 4 and 5. Let Sg and Zg denote the sets
obtained by applying Algorithms 3 and 4, respectively, on graph G. Then we have (Y L W|Sg,Zg)g,
G
where ggg is the graph obtained after removing all the incoming edges to Sg from G.

Y5g

g
Proof of Lemma 4. Let P, store all the paths from W to ¥ and Dwsg store only the directed paths

from W to Y in graph Qgg Let nodes(p) store the nodes on a path p. Notice that by construction of

Algorithm 3, vagg = (. Without loss of generality, let’s select a path p’ e va% We will show that
path p’ is blocked with respect to the sets Sg,Zg. Since G satisfies Assumption 4, i.e. there are no
incoming edges to W, and since Dvgv% =0, there must exist a collider on path p’. Let col'(p’) be the
first collider on path p’. Part 1. We first show col!(p’) ¢ Sg UZg. Since there are no incoming edges
to Sg in g@ by definition, we have col'(p’) ¢ Sg. Now suppose col'(p’) € Zg. Let p’ represent the
sub-path of p’ from W to col'(p’). Since col'(p’) is the first collider on path p’ and since there are
no incoming edges to W in ggg as a result of Assumption 4, then p’ is a directed path from W to
col'(p’). Since we assumed col'(p’) € Zg and since the edge Z — Y is included in the graph G for all
Z € Zg by construction of Algorithm 4, we must have col!(p’) — Y included in graph Qgg However,
this implies that there must exist a directed path from W to Y where col'(p’) is the second-to-last
element. Consequently, it must be the case that coll(p’) € Sg as a result of Algorithm 3. Therefore
p’ cannot exist in Qgg This leads to a contradiction. Hence we must have col'(p’) ¢ Zg. Part 2.
Next, we demonstrate that the set Sg UZg does not contain any descendants of col'(p’) within the
graph Qgg. Note that none of the nodes in Sg can be a descendant of col L(p") in Qgg as Qgg doesn’t
include any incoming edges to Sg. Next we show Zg doesn’t include a descendant of col'(p’). We
prove this by contradiction. Suppose there exists Z’ € Zg where Z’ is a descendant of col!(p’). Note
that G must include the edge Z’ — Y by construction of Algorithm 4, which implies Qgg includes the
edge Z' — Y. Since we assumed Z’ is a descendant of col'(p’) and since p’ is a directed path from W

to col'(p’) in Qgg, there exists a directed path from W to Y where Z’ is the second-to-last element.



48

Hence we must have Z’ € Sg, however, this conflicts with the steps of Algorithm 4. Therefore Z’
cannot be a descendant of col'(p’).

We thus far demonstrated that there exists a collider col!(p”) on path p’ where col'(p’) ¢ Sg U Zg
and Sg UZg doesn’t include any descendants of col L(p”"). Then by Definition 1, path p’ between W
and Y is blocked. This will hold for all paths between W and Y in Qgg Hence by Definition 2, we
have (Y L W|Sg,Zg)g§§. O

Proof of Proposition 3. Note that this proof utilizes the rules of do-calculus as outlined by
Pearl (2000). For detailed information on these rules, please refer to Appendix B. We will use the
following notation in this proof: Gy denotes the graph obtained by deleting all incoming arrows to
nodes in X from G. Similarly, Gx denotes the graph obtained by deleting all outgoing arrows from
nodes in X from G.

The proof proceeds as follows:

P(Y=y|D=E,do(W=w))= Z P(Y=y|D=E,do(W=w),Zg=25)P(Zg =25 | D =E,do(W=w)).
ZgEZg
(8a)

Equation (8a) holds by the law of total probability. Again by the law of total probability we have

P(Y=y|D=E,do(W=w))= > > P(Y=y|D=E,do(W=w),Zg=1g,8g =5)
zeZ seS
X P(Sg =sg | D =E,do(W =w),Zg =17g) (8b)

XP(ZQ =Zg | D=E,dO(W=W)).

Since Zg blocks all the backdoor paths from Sg to Y by Proposition 2, we have (Y L
SgIW.Zg)gy,, as . Then by rule 2 of do-calculus, we have:
Sg

P(Y=y|D=E,do(W=w))= > 3" P(Y=y|D=E,do(W=w),do(Zg =1g),8¢ =5g)
zeZ seS
X P(Sg=sg|D=E,do(W=w),Zg=1g) (8¢c)

XP(ZQ =zg | D=E,dO(W=W)).

Next we can replace do(W =w) with W =w by Assumption 4.

P(Y=y|D=E,do(W=w))= > > P(Y=y|D=E,W=w,do(Zg =12g),8g =s¢)
z€Z s€8
XP(Sg=Sg|D=E,W=W,Zg=Zg) (8d>
XP(ZQIZngIE,WZW).

Note that we have (Y L W|Sg, Zg)g, by Lemma 4. Then by rule 1 of do-calculus, we have:
G
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P(Y=y|D=E,do(W=w))= > > P(Y=y|D=E,do(Zg=25),8 =5)
z€Z s€S
XP(SQZSngZE,W:W,ZQIZg) (86)
XP(Zg:Zg |D=E,W=W).
Note that we have (Y L Sg|Zg)g§g as Proposition 2 shows that Zg satisfies the backdoor criterion

given in Definition 3. Let’s introduce a variable X and set X =@ to invoke rule 2 of do-calculus.

Then, we have :

P(Y=y|D=E,do(W=w))= > > P(Y=y|D=E,Zg=1g,8g =5g)
Z€Z seS
XP(Sg=Sg|D=E,W=W,Zg=Zg) (Sf)

XP(ZQ =Zg | DZE,W:W).
Furthermore, the proof of Lemma 4 shows that all paths between Zg and W in G must include a

collider. Hence we have (Zg L W)g_.. Then by the rule 1 of do-calculus, we have:

P(Y=y|D=E,do(W=w))= ZZP(Y:y|D:E,Zg:zQ,Sg25g)
z€Z s€S
XP(SQ=SQ|D=E,W=W,ZQ=ZQ) (Sg)

XP(ZgZZg|D=E).

Finally, by Assumption 6 we have:

P(Y=y|D=E,do(W=w))= > > P(Y=y|D=0,Zg=1g.8g=sg)
Z€Z§S§€Sg

XP(Sg=sg|D=E,W=w,Zg=1g) (8h)
XP(ZQ=ZQ|D=E).E|
Proof of Theorem 3. Under Assumptions 1-7, Theorem 2 proves that the true graph G* is

included in G returned by the COMB-PC algorithm. Then, by Proposition 3, the true average
treatment effect 7g+ must be included in 7g- € {rg |G € G} as G* € G. O



